Skip to main content

Cluster Expansion in Semiconductor Quantum Optics

  • Chapter

Abstract

During recent decades, semiconductor research gradually progressed towards the quantum-optical regime. For example, the special quantum nature of light is apparent when semiconductor quantum dots emit well defined photons [1,2] or when light-matter entanglement influences optical experiments in microcavity structures [3,4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J.M. Gérard, and I. Abram. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett., 87: 183601, 2001.

    Article  ADS  Google Scholar 

  2. O. Benson, C. Santora, M. Pelton, and Y. Yamamoto. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett., 84: 2513, 2000.

    Article  ADS  Google Scholar 

  3. Y.-S. Lee, T.B. Norris, M. Kira, F. Jahnke, S.W. Koch, G. Khitrova, and H.M. Gibbs. Quantum correlations and intraband coherences in semiconductor cavity QED. Phys. Rev. Lett., 83: 5338, 1999.

    Article  ADS  Google Scholar 

  4. C. Ell, P. Brick, M. Hübner, E.S. Lee, O. Lyngnes, J.P. Prineas, G. Khitrova, H.M. Gibbs, M. Kira, F. Jahnke, S.W. Koch, D.G. Deppe, and D.L. Huffaker. Quantum correlations in the nonperturbative regime of semiconductor micro-cavities. Phys. Rev. Lett., 85: 5392–5395, 2000.

    Article  ADS  Google Scholar 

  5. D.R. Wake, H.W. Yoon, J.P. Wolfe, and H. Morkoc. Response of excitonic absorption spectra to photoexcited carriers in GaAs quantum wells. Phys. Rev. B, 46: 13452, 1992.

    Article  ADS  Google Scholar 

  6. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69: 3314, 1992.

    Article  ADS  Google Scholar 

  7. T.B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch. Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity. Phys. Rev. B, 50: 14663, 1994.

    Article  ADS  Google Scholar 

  8. T. Rappen, U.G. Peter, M. Wegener, and W. Schäfer. Polarization dependence of dephasing processes: A probe for many-body effects. Phys. Rev. B. 49: 10774, 1994.

    Article  ADS  Google Scholar 

  9. P. Kner, W. Schäfer, R. Lövenich, and D.S. Chemla. Coherence of four-particle correlations in semiconductors. Phys. Rev. Lett., 81: 5386, 1998.

    Article  ADS  Google Scholar 

  10. G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, and S.W. Koch. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 71: 1591, 1999.

    Article  ADS  Google Scholar 

  11. F. Tassone, F. Bassani, and L.C. Andreani. Quantum-well reflectivity and exciton-polariton dispersion. Phys. Rev. B, 45: 6023, 1992.

    Article  ADS  Google Scholar 

  12. K. El Sayed, L. Bänyai, and H. Haug. Coulomb quantum kinetics and optical dephasing on the femtosecond time scale. Phys. Rev. B, 50: 1541, 1994.

    Article  ADS  Google Scholar 

  13. T. Stroucken, A. Knorr, C. Anthony, A. Schulze, P. Thomas, S.W. Koch, M. Koch, S.T. Cundiff, J. Feldmann, and E.O. Göbel. Light propagation and disorder effects in semiconductor multiple quantum wells. Plays. Rev. Lett., 74: 2391, 1995.

    Article  ADS  Google Scholar 

  14. F. Jahnke, M. Kira, and S.W. Koch. Linear and nonlinear optical properties of quantum confined excitons in semiconductor microcavities. Z. Physik B, 104: 559, 1997.

    Article  ADS  Google Scholar 

  15. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S.W. Koch, P. Brick, M. Hübner, C. Ell, J.P. Prineas, G. Khitrova, and H.M. Gibbs. Coulomb memory signatures in the excitonic optical stark effect. Phys. Rev. Lett., 82 (15): 3112, 1999.

    Article  ADS  Google Scholar 

  16. H. Haug and E. Hanamura. Condensation effects of excitons. Phys. Rep., 33: 209–284, 1977.

    Article  ADS  Google Scholar 

  17. H. Haug and S.W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publ., Singapore, 3. edition, 1994.

    Google Scholar 

  18. D. Snoke. Coherent exciton waves. Science, 273: 1351–1352, 1996.

    Article  ADS  Google Scholar 

  19. D.G. Lidzey, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S. Walker, and D.M. Whittaker. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature, 395: 53–55, 1998.

    Article  ADS  Google Scholar 

  20. T. Lundstrom, W. Schoenfeld, H. Lee, and P.M. Petroff. Exciton storage in semiconductor self-assembled quantum dots. Science, 286: 2312–2314, 1999.

    Article  Google Scholar 

  21. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel. Hidden symmetries in the energy levels of excitonic `artificial atoms’. Nature, 405: 923–926, 2000.

    Article  ADS  Google Scholar 

  22. R. Kumar, A.S. Vengurlekar, A.V. Gopal, T. Melin, F. Laruelle, B. Etienne, and J. Shah. Exciton formation and relaxation dynamics in quantum wires. Phys. Rev. Lett., 81: 2578, 1998.

    Article  ADS  Google Scholar 

  23. X. Marie, J. Barrau, P. Le Jeune, T. Amand, and M. Brosseau. Exciton formation in quantum wells. Phys. stat. sol. (a), 164: 359, 1997.

    Article  ADS  Google Scholar 

  24. A. Vinattieri, J. Shah, T.C. Darren, D.S. Kim, L.N. Pfeiffer, M.Z. Maialle, and L.J. Sham. Exciton dynamics in GaAs quantum-wells under resonant excitation. Phys. Rev. B, 50: 10868, 1994.

    Article  ADS  Google Scholar 

  25. P.W.M. Blom, P.J. Vanhall, C. Smit, J.P. Cuypers, and J.H. Wolter. Selective exciton formation in thin GaAs/AlGai_sAs quantum wells. Phys. Rev. Lett., 71: 3878, 1993.

    Article  ADS  Google Scholar 

  26. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D.S. Katzer. Enhanced radiative recombination of free excitons in GaAs quantum wells. Phys. Rev. Lett., 67: 2355, 1991.

    Article  ADS  Google Scholar 

  27. W. Hoyer, M. Kira, and S.W. Koch. Influence of coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures. Phys. Rev. B, 67: 155113, 2003.

    Article  ADS  Google Scholar 

  28. M. Bonitz. Quantum Kinetic Theory. Teubner, Stuttgart, 1998.

    Google Scholar 

  29. G.D. Mahan. Many-Particle Physics. Plenum, New York, 2. edition, 1990.

    Google Scholar 

  30. J. Hader, P. Thomas, and S.W. Koch. Optoelectronics of semiconductor super-lattices. Prog. in Quant. Electr., 22:123, 1998.

    Article  ADS  Google Scholar 

  31. H. Haug and A.-P. Jauho. Quantum Kinetics in Transport f’4 Optics of Semiconductors. Springer-Verlag, Berlin, 1. edition, 1996.

    Google Scholar 

  32. C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, and P. Schwendimann. Nonequilibrium dynamics of free quantum-well excitons in time-resolved photoluminescence. Phys. Rev. B, 53: 15834, 1996.

    Article  ADS  Google Scholar 

  33. K. Siantidis, V.M. Axt, and T. Kuhn. Dynamics of exciton formation for near band-gap excitations. Phys. Rev. B, 65: 035303, 2001.

    Article  ADS  Google Scholar 

  34. S.R. Bolton, U. Neukirch, L.J. Sham, D.S. Chemla, and V.M. Axt. Demonstration of sixth-order coulomb correlations in a semiconductor single quantum well. Phys. Rev. Lett., 85: 2002, 2000.

    Article  ADS  Google Scholar 

  35. C. Cohen-Tamioudji, J. Dupont-Roc, and G. Grynberg. Photons 6 Atoms. Wiley, New York, 3. edition, 1989.

    Google Scholar 

  36. M. Kira, F. Jahnke, W. Royer, and S.W. Koch. Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. in Quant. Electr., 23:189, 1999.

    Article  ADS  Google Scholar 

  37. see e.g. articles in The Hubbard Model, ed. by M. Rasetti, Series on Advances in Statistical Mechanics, World Scientific Publ. (1991).

    Google Scholar 

  38. W. Schäfer and M. Wegener. Semiconductor Optics and Transport Phenomena. Springer-Verlag, Berlin, 1. edition, 2002.

    Google Scholar 

  39. J. Cfzek. On correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. J. Chern. Phys., 45: 4256, 1966.

    Article  ADS  Google Scholar 

  40. G.D. Purvis and R.J. Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 76: 1910, 1982.

    Article  ADS  Google Scholar 

  41. F.E. Harris, H.J. Monkhorst, and D.L. Freeman. Algebraic and Diagrammatic Methods in Many-Fermion Theory. Oxford Press, New York, 1. edition, 1992.

    Google Scholar 

  42. J. Fricke. Transport equations including many-particle correlations for an arbitrary quantum system: A general formalism. Annals of Physics. 252 (2): 479, 1996.

    Article  MathSciNet  ADS  Google Scholar 

  43. V.M. Agranovich and O.A. Dubowskii. Effect of retarded interaction of exciton spectrum in 1-dimensional and 2-dimensional crystals. JETP Lett., 3: 223, 1966.

    Google Scholar 

  44. E. Hanamura. Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Phys. Rev. B, 38: 1228, 1988.

    Article  Google Scholar 

  45. L.C. Andreani, F. Tassone, and F. Bassani. Radiative lifetime of free excitons in quantum wells. Solid State Commun., 77: 641, 1991.

    Article  ADS  Google Scholar 

  46. D.S. Citrin. Comments Condens. Matter Phys., 16: 263, 1993.

    Google Scholar 

  47. D.F. Walls and G.J. Milburn. Quantum Optics. Springer-Verlag, New York, 1. edition, 1994.

    Google Scholar 

  48. W. Hoyer, M. Kira, and S.W. Koch. Semiconductor Bloch Equations for Classical and Quantum Fields, pp. 15–62. In Proceedings of the International School of Physics “Enrico Fermi”, Course CL, Electron and Photon Confinement in Semiconductor Nanostructures, eds. B. Deveaud, A. Quattropani and P. Schwendimann, IOS Press, Amsterdam (2003)

    Google Scholar 

  49. A. Thränhardt, S. Kuckenburg, A. Knorr, T. Meier, and S.W. Koch. Quantum theory of phonon-assisted excitor formation and luminescence in semicondutor quantum wells. Phys. Rev. B, 62 (4): 2706, 2000.

    Article  ADS  Google Scholar 

  50. M. Kira, F. Jahnke, and S.W. Koch. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett., 81: 3263, 1998.

    Article  ADS  Google Scholar 

  51. M. Kira, W. Hoyer, T. Stroucken, and S.W. Koch. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett., 87: 176401, 2001.

    Article  ADS  Google Scholar 

  52. E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58: 2059–2062, 1987.

    Article  ADS  Google Scholar 

  53. S. John. Strong localization of photons in certain disordered dielectric super-lattices. Phys. Rev. Lett., 58: 2086–2489, 1987.

    Article  ADS  Google Scholar 

  54. D. Labilloy, H. Benisty, C. Weisbuch, T.F. Krauss, R.M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin. Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths. Phys. Rev. Lett., 79: 4147, 1997.

    Article  ADS  Google Scholar 

  55. S. Glutsch, K. Hannewald, and F. Bechstedt. Green’s function approach to photoluminescence in semiconductors. Phys. stat. sol. (b), 221: 235, 2000.

    Article  ADS  Google Scholar 

  56. K. Hannewald, S. Glutsch, and F. Bechstedt. Theory of photoluminescence in semiconductors. Phys. Rev. B, 62: 4519, 2000.

    Article  ADS  Google Scholar 

  57. G. Khitrova, D.V. Wick, J.D. Berger, C. Ell, J.P. Prineas, T.R. Nelson Jr., O. Lyngnes, H.M. Gibbs, M. Kira, F. Jahnke, S.W. Koch, W. Rühle, and S. Hallstein. Excitonic effects, luminescence, and lasing in semiconductor microcavities. Phys. stat. sol. (b), 206: 3, 1998.

    Article  ADS  Google Scholar 

  58. K. Hannewald, S. Glutsch, and F. Bechstedt. Quantum-kinetic theory of hot luminescence from pulse-excited semiconductors. Phys. Rev. Lett., 86: 2451, 2001.

    Article  ADS  Google Scholar 

  59. R.F. Schnabel, R. Zimmermann, D. Bimberg, H. Nickel, R. Lösch, and W. Schlapp. Influence of exciton localization on recombination line shapes: Ina.Gai_,As/GaAs quantum wells as a model. Phys. Rev. B, 46: 9873, 1992.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoyer, W., Kira, M., Koch, S.W. (2004). Cluster Expansion in Semiconductor Quantum Optics. In: Morawetz, K. (eds) Nonequilibrium Physics at Short Time Scales. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08990-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08990-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05745-8

  • Online ISBN: 978-3-662-08990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics