Skip to main content

Activated Oxygen Species in Multiple Stress Situations and Protective Systems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 170))

Abstract

The electron configuration of molecular oxygen is unusual. It has two unpaired electrons, each in a π* orbital and having parallel spins, and thus it is a triplet molecule in the ground state. This is in contrast to most other molecules in the cell, which exist in the singlet ground state where all electrons have paired spins. Reactions between molecular oxygen and most molecules are therefore forbidden because of spin restriction. Molecular oxygen, however, can be converted to activated oxygen species by overcoming the spin restriction by a spin flip producing singlet oxygen (O2 1), or by the addition of either one, two or three electrons to form, respectively, the superoxide radical (O2 -), hydrogen peroxide (H2O2) or the hydroxyl radical (OH). Unlike molecular oxygen, these activated oxygen species (AOS) can be very reactive and are often referred to as reactive oxygen species (ROS). Cells must have effective mechanisms to remove excess AOS, particularly the most highly reactive hydroxyl radicals, to prevent oxidative damage to cellular components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan AL, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermis cells. Plant Cell 9:1559–1572

    PubMed  CAS  Google Scholar 

  • Allen R (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B 355:1419–1431

    Article  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Baier M, Dietz K-J (1999) Alkyl hydroperoxide reductases: the way out of the oxidative breakdown of lipids in chloroplasts. Trends Plant Sci 4:166–168

    Article  PubMed  Google Scholar 

  • Bolwell GP, Wojitaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defense: a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Boveris A, Cadenas E (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In: Oberley LW (ed) Superoxide dismutase, vol II CRC Press, Boca Raton, pp 15–30

    Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutases and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Chamnongpol S, Willekens H, Langebartels C, Van Montagu M, Inze D, Van Camp W (1996) Transgenic tobacco with reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J 10:491–503

    Article  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21:8483–8489

    Article  PubMed  CAS  Google Scholar 

  • Dorey S, Baillieul F, Saindrenan P, Fritig B, Kauffmann S (1998) Tobacco class I and class II catalases are differentially expressed during elicitor-induced hypersensitive cell death and localized acquired resistance. Mol Plant Microb Inter 11:1102–1109

    Article  CAS  Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997) Plant glutathione peroxidases. Physiol Plant 100:234–240

    Article  CAS  Google Scholar 

  • Foyer C, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  PubMed  CAS  Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JDG (1996) Rboha a rice homologue of the mammalian gp91phoxrespiratory burst oxidase gene. Plant J 10:515–522

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Ara-bidopsisCBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsisduring excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  PubMed  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homologue of the neutrophil NADPH oxidase gp91phoxsubunit gene encodes a plasma membrane protein with Ca2+binding motifs. Plant Cell 10:255–266

    PubMed  CAS  Google Scholar 

  • Kendall AC, Keys AJ, Turner JC, Lea PJ, Miflin BJ (1983) The isolation and characterization of a catalase-deficient mutant of barley. Planta 159:505–511

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Krause GH, Comic G (1987) CO2and O2interactions in photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 169–196

    Google Scholar 

  • Langebartels C, Schraudner M, Heller W, Ernest D, Sandermann H (2000) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inze D, van Montagu M (eds) Oxidative stress in plants. Harwood Acad Publisher, London, pp 105–135

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Wang Y, Mcintosh L (1999) The alternate oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  PubMed  CAS  Google Scholar 

  • Merquiol E, Pnueli L, Cohen M, Simovitch M, Goloubinoff P, Kaplan A, Mittler R (2002) Seasonal and diurnal variations in gene expression in the desert legume Retama rae-tam. Plant Cell Environ 25:1627–1638

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Feng X, Cohen M (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10:461–474

    PubMed  CAS  Google Scholar 

  • Mittler R, Hallak-Herr E, Orvar BL, Van Camp W, Willekens H, Inze D, Ellis B (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyper-responsive to pathogen infection. Proc Natl Acad Sci USA 96:14165–14170

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001) Living under a ‘dormant’ canopy: a molecular acclimation mechanism of the desert plant Rétama raetam. Plant J 25:407–416

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response, to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11:1297–1305

    Article  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    Article  CAS  Google Scholar 

  • Purvis AC, Shewfelt RL (1993) Does the alternate pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88:712–718

    Article  CAS  Google Scholar 

  • Rao MV, Davis K (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Rodermel S, Inzé D, Mittler R (2002a) Double antisense plants with suppressed expression of ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants with suppressed expression of ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Hongjian L, Mittler R (2002b) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H, Wellburn AR, Heath RL (eds) (1997) Forest decline and ozone. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langbartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Scandalios JG (1997) Molecular genetics of superoxide dismutases in plants. In: JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 527–568

    Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsisgenes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B 355:1455–1464

    Article  CAS  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (1997) Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativumL.) and its expression in response to stress. Plant Mol Biol 35:641–654

    Article  PubMed  CAS  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  PubMed  CAS  Google Scholar 

  • Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, Mackerness SA-H (1998) Ultra-violet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acid pathogenesis-related proteins. Plant Cell Environ 21:685–694

    Article  CAS  Google Scholar 

  • Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98:9437–9442

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Inze D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2and is indispensable for stress defence in C-3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Len PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B 355:1517–1529

    Article  CAS  Google Scholar 

  • Xiong L, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119:205–212

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001a) The Arabidopsis los5/aba3locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    PubMed  CAS  Google Scholar 

  • Xiong L, Lee BH, Ishitani M, Lee H, Zhang C, Zhu JK (2001b) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mittler, R., Zilinskas, B.A. (2004). Activated Oxygen Species in Multiple Stress Situations and Protective Systems. In: Sandermann, H. (eds) Molecular Ecotoxicology of Plants. Ecological Studies, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08818-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08818-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05670-3

  • Online ISBN: 978-3-662-08818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics