Skip to main content

Ecophysiology of Plant Growth Under Heavy Metal Stress

  • Chapter
Book cover Heavy Metal Stress in Plants

Abstract

The growth of whole plants or of plant parts is frequently used as an easily measurable parameter to monitor the effects of various stressors. Growth changes are often the first and most obvious reactions of plants under stress. In particular, those organs which have the first direct contact with noxious substances, normally the roots in contaminated soils, show rapid and sensitive changes in their growth characteristics (Baker and Walker 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adalsteinsson S (1994) Compensatory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. J Plant Nutr 17: 1501–1512

    Article  CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Aller AJ, Bernal JL, del Nozal MJ, Deban L (1990) Effects of selected trace elements on plant growth. J Sci Food Agric 51: 447–479

    Article  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7: 1–85

    Article  Google Scholar 

  • Ares A, Hwang SG, Miyasaka SC (1996) Taro response to different iron levels in hydroponic solution. J Plant Nutr 19: 281–292

    Article  CAS  Google Scholar 

  • Arianoutsou M, Rundel PW, Berry WL (1993) Serpentine endemics as biological indicators of soil element concentrations. In: Markert B (ed.) Plants as biomonitors. VCH, Weinheim, pp. 179–189

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Speciation Bioavail 1: 7–17

    CAS  Google Scholar 

  • Berry WL, Wallace A (1981) Toxicity: the concept and relationship to the dose response curve. J Plant Nutr 3: 13–19

    Article  CAS  Google Scholar 

  • Bingham FT, Page AL (1975) Cadmium accumulation by economic crops. Proceedings of the International Conference on Heavy Metals in the Environment, Toronto, pp 433–441

    Google Scholar 

  • Blackman VH (1919) The compound interest law and plant growth. Ann Bot 33: 353–360

    Google Scholar 

  • Blair LM, Taylor GJ (1997) The nature of interaction between aluminum and manganese on growth and metal accumulation in Triticum aestivum. Environ Exp Bot 37: 25–37

    Article  CAS  Google Scholar 

  • Bollard EG (1983) Involvement of unusual elements in plant growth and nutrition. In: Läuchli A, Bieleski RL (eds) Encyclopedia of plant physiology, new series, Vol. 15B. Springer, Berlin, Heidelberg, New York, pp 695–755

    Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99: 101–106

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17: 153–162

    Article  CAS  Google Scholar 

  • Cakmak S, Gülüt KY, Marschner H, Graham RD (1994) Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17: 1–17

    Article  CAS  Google Scholar 

  • Causton DR (1991) Plant growth analysis: the variability of relative growth rate within a sample. Ann Bot 67: 137–144

    Google Scholar 

  • Causton DR, Venus JC (1981) The biometry of plant growth. Edward Arnold, London Chaoui A, Ghorbal MH, Ferjani EE (1997) Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci 126: 21–28

    Google Scholar 

  • Chiariello NR, Mooney HA, Williams K (1989) Growth, carbon allocation and cost of plant tissues. In: Pearcy RW, Ehieringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology. Chapman and Hall, London, pp 327–365

    Chapter  Google Scholar 

  • Cieslinski G, Neilsen GH, Hogue EJ (1996) Effect of soil cadmium application and pH on growth and cadmium accumulation in roots,leaves and fruit of strawberry plants (Fragaria x ananassa Duch.). Plant Soil 180: 267–276

    Article  CAS  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.)malate exudation as evidence for an in planta mechanism. Planta 204: 318–323

    Article  CAS  Google Scholar 

  • De Varennes A, Torres MO, Coutinho JF, Rocha MMGS, Neto MMPM (1996) Effects of heavy metals on the growth and mineral composition of a nickel hyperaccumulator. J Plant Nutr 19: 669–676

    Article  Google Scholar 

  • Dong B, Rengel Z, Graham RD (1995) Root morphology of wheat genotypes differing in zinc efficiency. J Plant Nutr 18: 2761–2773

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26: 776–781

    Article  CAS  Google Scholar 

  • El-Bassam N (1978) Spurenelemente: Nährstoffe und Gift zugleich. Kali-Briefe (Büntehof) 14: 255–272

    CAS  Google Scholar 

  • Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends Plants 4: 45–50

    Google Scholar 

  • Espen L, Pirovano L, Cocucci SM (1997) Effects of Ni’ during the early phases of radish (Raphanus sativus) seed germination. Environ Exp Bot 38: 187–197

    Article  CAS  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth. Blackwell, Oxford

    Google Scholar 

  • Faber BA, Zasoski RJ, Burau RG, Uriu K (1990) Zinc uptake by corn as affected by vesicular -arbuscular mycorrhizae. Plant Soil 129: 121–130

    CAS  Google Scholar 

  • Fellenberg G (1981) Pflanzenwachstum. Fischer, Stuttgart

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566

    Article  CAS  Google Scholar 

  • Fuhrer J (1983) Phytotoxic effects of cadmium in leaf segments of Avena sativa L., and the protective role of calcium. Experientia 39: 525–526

    Article  CAS  Google Scholar 

  • Gabbrielli R, Pandolfini T, Vergnano O, Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122: 271–277

    Article  CAS  Google Scholar 

  • Ganmore-Neumann R, Bar-Yosef B, Shanzer A, Libman J (1992) Enhanced iron (Fe) uptake by synthetic siderophores in corn roots. J Plant Nutr 15: 1027–1037

    Article  CAS  Google Scholar 

  • Garland CJ, Wilkins DA (1981) Effect of calcium on the uptake and toxicity of lead in Hordeum vulgare L. and Festuca ovina L. New Phytol 87: 581–593

    Article  CAS  Google Scholar 

  • Gerendas J, Sattelmacher B (1997) Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea-grown plants. Plant Soil 190: 153–162

    Article  CAS  Google Scholar 

  • Gonzalez A, Lynch JP (1997) Effects of manganese toxicity on leaf CO, assimilation of contrasting common bean genotypes. Physiol Plant 101: 872–880

    Article  CAS  Google Scholar 

  • Göransson A (1993) Growth and nutrition of small Betula pendula plants at different relative addition rates of iron. Trees 8: 31–38

    Article  Google Scholar 

  • Gries D, Runge M (1995) Responses of calcicole and calcifuge Poaceae species to iron-limiting conditions. Bot Acta 108: 482–489

    CAS  Google Scholar 

  • Griffioen WAJ, Ietswaart JH, Ernst WHO (1994) Mycorrhizal infection of anAgrostis capillaris population on a copper contaminated soil. Plant Soil 158: 83–89

    Article  CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104: 815–820

    PubMed  CAS  Google Scholar 

  • Gussarsson M (1994) Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine roots as a primary target for cadmium toxicity. J Plant Nutr 17: 2151–2163

    Article  CAS  Google Scholar 

  • Hagemeyer J (1990) Ökophysiologische Untersuchungen zur Salz-und Cadmiumresistenz von Tamarix aphylla (L.) Karst. (Tamaricaceae). Diss Bot 155: 1–194

    Google Scholar 

  • Hagemeyer J, Breckle SW (1996) Growth under trace element stress. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. 2nd edn, Dekker, New York, pp 415–433

    Google Scholar 

  • Haghiri F (1973) Cadmium uptake by plants. J Environ Qua!’ 2: 93–96

    Article  CAS  Google Scholar 

  • Harper FA, Smith SE, Macnair MR (1997) Where is the cost in copper tolerance in Mimulus guttatus? Testing the trade-off hypothesis. Funct Ecol 11: 764–774

    Article  Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189: 303–319

    Article  CAS  Google Scholar 

  • Hodgson JF, Lindsay WL, Trierweiler JF (1966) Micronutrient cation complexing in soil solution. Soil Sci Soc Amer Proc 30: 723–726

    Article  CAS  Google Scholar 

  • Hunt R (1990) Basic growth analysis. Hyman, London

    Book  Google Scholar 

  • Inouhe M, Ninomiya S, Tohoyama H, Joho M, Murayama T (1994) Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono-and dicotyledonous plants. J Plant Res 107: 201–207

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102: 429–442

    Article  CAS  Google Scholar 

  • Klucas RV, Hanus FJ, Russell SA (1983) Nickel. A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc Natl Acad Sci USA 90: 2253–2257

    Article  Google Scholar 

  • Köhl KI (1997) Do Armeria maritima (Mill.) Willd. ecotypes from metalliferous soils and non-metalliferous soils differ in growth response under Zn stress? A comparison by a new artificial soil method. J Exp Bot 48: 1959–1967

    Google Scholar 

  • Kozlowski TT (1973) Shedding of plant parts. Academic Press, New York

    Google Scholar 

  • Langheinrich U, Tischner R, Godbold DL (1992) Influence of a high Mn supply on Norway spruce (Picea abies (L.) Karst.) seedlings in relation to the nitrogen source. Tree Physiol 10: 259–271

    Article  PubMed  CAS  Google Scholar 

  • Lidon FC, da Graca Barreiro M, Santos Henriques F (1995) Interactions between biomass production and ethylene biosynthesis in copper-treated rice. J Plant Nutr 18: 1301–1314

    Article  CAS  Google Scholar 

  • Liu D, Jiang W, Guo L, Hao Y, Lu C, Zhao F (1994) Effects of nickel sulfate on root growth and nucleoli in root tip cells of Allium cepa. Israel J Plant Sci 42: 143–148

    CAS  Google Scholar 

  • Macnair MR (1983) The genetic control of copper tolerance in the yellow monkey flower, Mimulus guttatus. Heredity 50: 283–293

    Article  CAS  Google Scholar 

  • Macnair MR, Smith SE, Cumbes QJ (1993) Heritability and distribution of variation in degree of copper tolerance in Mimulus guttatus at Copperopolis, California. Heredity 71: 445–455

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London Marschner H, Römheld V (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y, Eshel A, Katkafi U (eds) Plant roots–The hidden half. 2nd edn, Dekker, New York, pp 557–579

    Google Scholar 

  • Maynard DN (1979) Nutritional disorders of vegetable crops. A review. J Plant Nutr 1: 1–23

    Article  Google Scholar 

  • Menezes de Sequeira E, Pinto da Silva AR (1992) Ecology of serpentinized areas of north-east Portugal. In: Roberts A, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer, Dordrecht, pp 169–197

    Google Scholar 

  • Mengel K, Kirby EA (1987) Principles of plant nutrition. International Potash Institute, Berne Morrison RS, Brooks RR, Reeves RD (1980) Nickel uptake by Alyssum species. Plant Sci Lett 17: 451–457

    Google Scholar 

  • MortvedtJJ, Giordano PM, Lindsay NL (eds) (1972) Micronutrients in agriculture. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Moya JL, Ros R, Picazo I (1995) Heavy metal-hormone interactions in rice plants: effects on growth, net photosynthesis, and carbohydrate distribution. J Plant Growth Regul 14: 61–67

    Article  CAS  Google Scholar 

  • Nagy L, Proctor J (1997) Plant growth and reproduction on a toxic alpine ultramafic soil: adaptation to nutrient limitation. New Phytol 137: 267–274

    Article  CAS  Google Scholar 

  • Nriagu JO (1980) Production, uses and properties of cadmium. In: Nriagu JO (ed.) Cadmium in the environment. Part I. Wiley, New York, pp 35–70

    Google Scholar 

  • Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35: 347–354

    CAS  Google Scholar 

  • Ouzounidou G (1994a) Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environ Exp Bot 34: 165–172

    Article  CAS  Google Scholar 

  • Ouzounidou G (1994b) Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper. J Plant Nutr 17: 933–943

    Article  CAS  Google Scholar 

  • Ouzounidou G, Symeonidis L, Babalonas D, Karataglis S (1994) Comparative responses of a copper-tolerant and a copper-sensitive population of Minuartia hirsuta to copper toxicity. J Plant Physiol 144: 109–115

    Article  CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32: 154–160

    Article  PubMed  CAS  Google Scholar 

  • Polacco JC (1977) Nitrogen metabolism in soybean tissue culture. II. Urea utilization and urease synthesis require Ni’. Plant Physiol 59: 827–830

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35: 525–545

    Article  CAS  Google Scholar 

  • Rashid A, Rafique E, Bughio N, Yasin M (1997) Micronutrient deficiencies in rain fed calcareous soils of Pakistan. IV. Zinc nutrition of Sorghum. Commun Soil Sci Plant Anal 28: 455–467

    Article  CAS  Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121: 499–513

    Article  CAS  Google Scholar 

  • Ricken B, Häfner W (1996) Bedeutung der arbuskulären Mykorrhiza (AM) für die Schwermetalltoleranz von Luzerne (Medicago sativa L.) und Hafer (Avena sativa L.) auf einemklärschlammgedüngten Boden. Z Pflanzenernähr Bodenkd 159: 189–194

    Article  CAS  Google Scholar 

  • Roberts BA, Proctor J (eds) (1992) The ecology of areas with serpentinized rocks. A world view. Kluwer, Dordrecht

    Google Scholar 

  • Roberts JA, Hooley R (1988) Plant Growth Regulators. Blackie, Glasgow

    Book  Google Scholar 

  • Rodenkirchen H, Roberts BA (1993) Soils and plant nutrition on a serpentinized ridge in South Germany. Z Pflanzenernaehr Bodenkd 156: 407–410

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H (1990) Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil 123: 147–153

    Article  Google Scholar 

  • Rubio MI, Escrig I, Martinez-Cortina C, Lopez-Benet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants. Effects of mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14: 151–157

    Article  CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P (1997) Manganese toxicity in Echinochloa colona: effects of divalent manganese on growth and development. Isr J Plant Sci 45: 9–12

    CAS  Google Scholar 

  • Schachtschabel P, Blume HP, Hartge KH, Schwertmann U (1984) Lehrbuch der Bodenkunde. Entre, Stuttgart

    Google Scholar 

  • Sekimoto H, Hoshi M, Nomura T, Yokota T (1997) Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant Cell Physiol 38: 1087–1090

    Article  CAS  Google Scholar 

  • Sibly RM, Calow P (1989) A life-cycle theory or responses to stress. Biol J Linn Soc 37: 101–116

    Article  Google Scholar 

  • Smolders E, Merckx R, Schoovaerts F, Vlassak K (1991) Continuous shoot growth monitoring in hydroponics. Physiol Plant 83: 83–92

    Article  Google Scholar 

  • Snowden RED, Wheeler BD (1993) Iron toxicity to fen plant species. J Ecol 81: 35–46

    Article  CAS  Google Scholar 

  • Stevenson FJ, Ardakani MS (1972) Organic matter reactions involving micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay NL (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, WI, pp 79–114

    Google Scholar 

  • Taylor GJ (1989) Maximum potential growth rate and allocation of respiratory energy as related to stress tolerance in plants. Plant Physiol Biochem 27: 605–611

    Google Scholar 

  • Tolra RP, Poschenrieder C, Barcelo J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutrition. J Plant Nutr 19: 1531–1540

    Article  CAS  Google Scholar 

  • Tukendorf A, Skorzynska-Polit E, Baszynski T (1997) Homophytochelatin accumulation in Cd-treated runner bean plants is related to their growth stage. Plant Sci 129: 21–28

    Article  CAS  Google Scholar 

  • Utriainen MA, Kärenlampi LV, Kärenlampi SO, Schat H (1997) Differential tolerance to copper and zinc of micropropagated birches tested in hydroponics. New Phytol 137: 543–549

    Article  CAS  Google Scholar 

  • Vernon AJ, Allison JCS (1963) A method of calculating net assimilation rate. Nature 200: 814

    Article  Google Scholar 

  • Waisel Y (1996) Aeroponics: a tool for root research. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. 2nd edn. Dekker, New York, pp 239–245

    Google Scholar 

  • Wallace A, Romney EM (1977) Synergistic trace metal effects in plants. Commun Soil Sci Plant Anal 8: 699–707

    Article  CAS  Google Scholar 

  • Wallace A, Romney EM, Mueller RT, Alexander GV (1980) Calcium-trace metal interactions in soybean plants. J Plant Nutr 2: 79–86

    Article  CAS  Google Scholar 

  • Wallnöfer PR, Engelhardt G (1984) Schadstoffe, die aus dem Boden aufgenommen werden. In: Hock B, Elstner EF (eds) Pflanzentoxikologie. BlWissenschaftsverlag, Mannheim, pp 95–117

    Google Scholar 

  • Welch RM (1981) The biological significance of nickel. J Plant Nutr 3: 345–356

    Article  CAS  Google Scholar 

  • Wilcox HE (1996) Mycorrhizae. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. 2nd edn. Dekker, New York, pp 689–721

    Google Scholar 

  • Wilkinson DM, Dickinson NM (1995) Metal resistance in trees: the role of mycorrhizae. Oikos 72: 298–300

    Article  Google Scholar 

  • Wilson JB (1988) The cost of heavy-metal tolerance: an example. Evolution 42: 408–413

    Article  Google Scholar 

  • Yilmaz A, Ekiz H, Torun B, Gültekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. J Plant Nutr 20: 461–471

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants–a review. Gene 179: 21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagemeyer, J. (1999). Ecophysiology of Plant Growth Under Heavy Metal Stress. In: Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07745-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07745-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07747-4

  • Online ISBN: 978-3-662-07745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics