Skip to main content

Methods for Monitoring and Assessment of Bioremediation Processes

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

Abstract

The cleanup of the contaminated soils is a priority environmental task due to the risks contaminants pose to the groundwater, drinking water and soil fertility. A wide variety of biological, physical and chemical methods have been developed to decontaminate polluted sites. Any successful remediation technology should not simply transfer the contaminants to other environmental compartments. Bioremediation provides a cost-effective and contaminant/substrate-specific treatment technology (Ward et al. 2003). A successful bioremediation approach requires sufficient proof for the detoxification of the contaminants, preferably proven by complete mineralization (Dua et al. 2002). However, the determination of effectiveness and completeness to satisfactory status is one of the major problems. Current monitoring practices require the determination of the disappearance of the contaminants and their degradation products to regulatory levels are monitored followed by toxicity testing, usually on a single organism or species to make sure that there is no product or induced change resulting in any residual toxicity. The problems related to these monitoring approaches and to the assessment of successful bioremediation have been widely recognized and discussed (Höhner et al. 1998; White et al. 1998; van Straalen 2002; Widada et al. 2002a). The microbial community response may prove to be a much more comprehensive indicator of residual toxicity, which is more sensitive than single species toxicity screens, and can be used to complement the disappearance or sequestration of contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad S (1995) Oxidative stress from enviromental samples. Arch Insect Biochem Physiol 29: 135–157

    CAS  Google Scholar 

  • Aichinger G, Leslie Grady Jr CP, Tabak HH (1992) Application of respirometric biodegradability testing protocol to slightly soluble organic compounds. Water Environ Res 64: 890–900

    CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34: 4259–4265

    CAS  Google Scholar 

  • Andreoni V, Bernasconi S, Colombo M, van Beilen JB, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2: 572–577

    CAS  Google Scholar 

  • Applegate BM, Kelly C, Lackey L, McPherson J, Kehrmeyer S, Menn F-M, Bienkowski P, Saylor G (1997) Pseudomonas putida B2: a tod-lux bioluminescent reporter for toluene and trichloroethylene cometabolism. J Ind Microbiol Biotechnol 18: 4–9

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45: 180–209

    CAS  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants: diversity and environmental aspects of hydrocarbon biodegradation. BioScience 45: 332–338

    Google Scholar 

  • Balba MT, Al-Awandhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Meth 32: 155–164

    CAS  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R, Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. J Microbiol Meth 50: 227–236

    CAS  Google Scholar 

  • Bekins BA, Godsy EM, Warren E (1999) Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb Ecol 37: 263–275

    Google Scholar 

  • Berthe-Corti L, Bruns A (1999) The impact of oxygen tension on cell density and metabolic diversity of microbial communities in alkane degrading continuous-flow cultures. Microb Ecol 37: 70–77

    Google Scholar 

  • Bogardt AH, Hemmington BB (1992) Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites. Appl Environ Microbiol 58: 2579–2582

    CAS  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau J-Y, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86: 421–428

    Google Scholar 

  • Brigmon RL, Franck MM, Bray JS, Scott DF, Lanclos KD, Fliermans CB (1998) Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating organic contaminant degrading bacteria. J Microbiol Methods 32: 1–10

    CAS  Google Scholar 

  • Brohon B, Dlolme C, Gourdon R (2001) Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biol Biochem 33: 883–891

    CAS  Google Scholar 

  • Brown EJ, Braddock JF (1990) Sheen screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl Environ Microbiol 56: 3895–3896

    CAS  Google Scholar 

  • Burlage RS (1997) Emerging technologies: bioreporters, biosensors and microprobes. In: Hurst CJ (ed) Manual of environmental microbiology. ASM, Washington, DC, pp 115–123

    Google Scholar 

  • Chaîneau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227: 237–247

    Google Scholar 

  • Chang LW, Meier JR, Smith MK (1997) Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Arch Environ Contam Toxicol 55: 2924–2931

    Google Scholar 

  • Cho J-C, Tiedje JM (2002) Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol 68: 1425–1430

    CAS  Google Scholar 

  • Colores GM, Macur RE, Ward DM, Inskeep WP (2000) Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl Environ Microbiol 66: 2959–2964

    CAS  Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100: 2705–2738

    CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59: 143–152

    CAS  Google Scholar 

  • Delille D, Bassères A, Dessommes A (1997) Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microb Ecol 33: 97–105

    Google Scholar 

  • Dennis P, Edwards EA, Liss SN, Fulthorpe R (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69: 769–778

    CAS  Google Scholar 

  • Donaldson EC, Chilingarian GV, Yen TF (1989) Introduction. In: Donaldson EC, Chilingarian GV, Yen TF (eds) Microbial enhanced oil recovery. Elsevier, New York, pp 1–15

    Google Scholar 

  • Drobnik J (1999) Genetically modified organisms (GMO) in bioremediation and legislation. Int Biodet Biodeg 44: 3–6

    Google Scholar 

  • Eckford RE, Fedorak PM (2002a) Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. J Ind Microbiol Biotechnol 29: 83–92

    CAS  Google Scholar 

  • Eckford RE, Fedorak PM (2002b) Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol 29: 243–254

    CAS  Google Scholar 

  • Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol 45: 283–299

    CAS  Google Scholar 

  • Eriksson M, Swartling A, Dalhammer G (1998) Biological degradation of diesel fuel in water and soil monitored with solid-phase micro-extraction and GC-MS. Appl Microbiol Biotechnol 50: 129–134

    CAS  Google Scholar 

  • Errampalli D, Okamura H, Lee H, Trevors JT, van Elsas JD (1998) Green fluorescent protein as a marker to monitor survival of phenanthrene-mineralizing Pseudomonas sp. UG14Gr in creosote-contaminated soil. FEMS Microbiol Ecol 26: 181–191

    CAS  Google Scholar 

  • Foght J, Semple K, Westlake DWS, Blenkinsopp S, Sergy G, Wang Z, Fingas M (1998) Development of a standard bacterial consortium for laboratory efficacy testing of commercial freshwater oil spill bioremediation agents. J Ind Microbiol Biotechnol 21: 322–330

    CAS  Google Scholar 

  • Foght JM, Semple K, Gauthier C, Westlake DWS, Blenkinsopp S, Sergy G, Wang Z, Fingas M (1999) Effect of nitrogen source on biodegradation of crude oil by a defined bacterial consortium incubated under cold, marine conditions. Environ Technol 20: 839–849

    CAS  Google Scholar 

  • Geesey GG, Neal AL, Suci PA, Peyton BM (2002) A review of spectroscopic methods for characterizing microbial transformations of minerals. J Microbiol Meth 51: 125–139

    CAS  Google Scholar 

  • Graves DA, Lang CA, Leavitt ME (1991) Respirometric analysis of the biodegradation of organic contaminates in soil and water. Appl Biochem Biotechnol 28 /29: 813–826

    Google Scholar 

  • Gu MB, Chang ST (2000) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16: 667–674

    Google Scholar 

  • Haines JR, Koran KM, Holder EL, Venosa AD (2003) Protocol for laboratory testing of crude-oil bioremediation products in freshwater conditions. J Ind Microbiol Biotechnol 30: 107–113

    CAS  Google Scholar 

  • Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173: 255–263

    CAS  Google Scholar 

  • Hanson JG, Desai JD, Desai AJ (1993) A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech 7: 745–748

    CAS  Google Scholar 

  • Harju JH, Nakles DV, DeVaull G, Hopkins H (1999) Application of risk-based approaches for the management of E & P sites. SPE/EPA Exploration and Production Environmental Conference, Society of Petroleum Engineers, Feb/Mar 1999

    Google Scholar 

  • Hay AG, Rice JF, Applegate BM, Bright NG, Sayler GS (2000) A bioluminescent whole cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol 66: 4589–4594

    CAS  Google Scholar 

  • Heitzer A, Applegate B, Kehrmeyer S, Pinkart H, Webb OF, Phelps TJ, White D, Sayler GS (1998) Physiological considerations of environmental applications of lux reporter fusions. J Microbiol Meth 33: 45–57

    CAS  Google Scholar 

  • Höhener P, Hunkeler D, Hess A, Bregnard T, Zeyer J (1998) Methodology for evaluation of engineered in situ bioremediation: lessons from a case study. J Microbiol Meth 32: 179–192

    Google Scholar 

  • Hosein SG, Millette D, Butler BJ, Greer CW (1997) Catabolic gene probe analysis of an aquifer microbial community degrading creosote-related polycyclic aromatic and heterocyclic compounds. Microb Ecol 34: 81–89

    CAS  Google Scholar 

  • Hubert C, Shen Y, Voordouw G (1999) Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Appl Environ Microbiol 65: 3064–3070

    CAS  Google Scholar 

  • Huesemann MH (1995) Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ Sci Technol 29: 7–18

    CAS  Google Scholar 

  • Hund K, Traunspurger W (1994) Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site. Chemosphere 29: 371–390

    CAS  Google Scholar 

  • Ijah UJJ (1998) Studies on relative capabilities of bacterial and yeast isolates from tropical soils in degrading crude oil. Waste Manage 18: 293–299

    CAS  Google Scholar 

  • Ikariyama Y, Nishiguchi S, Koyama T, Kobatake E, Aizawa M (1997) Fiber-optic bio-monitoring of benzene derivatives by recombinant E. coli bearing luciferase gene fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem 69: 2600–2605

    CAS  Google Scholar 

  • Kämpfer P, Steiof M, Becker PM, Dott W (1993) Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site. Microb Ecol 26: 161–188

    Google Scholar 

  • Keane A, Phoenix P, Ghoshal S, Lau PCK (2002) Exposing culprit organic pollutants: a review. J Microbiol Meth 49: 103–119

    CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211–236

    CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Le H, Trevors JT (2002) Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil. Biorem J 6: 57–63

    CAS  Google Scholar 

  • Korda A, Sanatas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatment and commercial microorganisms currently used. Appl Microbiol Biotechnol 48: 677–686

    CAS  Google Scholar 

  • Kozdroj J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Meth 43: 197–212

    CAS  Google Scholar 

  • Langworthy DE, Stapleton RD, Sayler GS, Findlay RH (1998) Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl Environ Microbiol 64: 3422–3428

    CAS  Google Scholar 

  • Lau PCK, Wang Y, Patel A, Labbe D, Bergeron H, Brousseau R, Konishi Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci USA 95: 1453–1458

    Google Scholar 

  • Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64: 5023–5026

    CAS  Google Scholar 

  • Laurie AD, Lloyd-Jones G (2000) Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl Environ Microbiol 66: 1814–1817

    CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54: 305–315

    CAS  Google Scholar 

  • Lee SM, Jung JY, Chung YC (2000) Measurement of ammonia inibition of microbial activity in biological wastewater treatment process using dehydrogenase assay. Biotechnol Lett 22: 991–994

    CAS  Google Scholar 

  • MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang Y-J, White DC (1999) Microbial population changes during bioremediation of an experiment oil spill. Appl Environ Microbial 65: 3566–3577

    CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Anton van Leeuwen 77: 103–116

    CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity–a useful indicator of oil biodegradation. Biotechnol Tech 13: 859–863

    CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40: 339–346

    CAS  Google Scholar 

  • Mathew M, Obbard JP (2001) Optimisation of the dehydrogenase assay for measurement of indigenous microbial activity in beach sediments contaminated with petroleum. Biotechnol Lett 23: 227–230

    CAS  Google Scholar 

  • Mathew M, Obbard JP, Ting YP, Gin YH, Tan HM (1999) Bioremediation of oil contaminated beach sediments using indigenous microorganisms in Singapore. Acta Biotechnol 19: 225–233

    CAS  Google Scholar 

  • Mesarch MB, Nakatsu CH, Nies L (2000) Development of catechol 2,3-dioxygenasespecific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol 66: 678–683

    CAS  Google Scholar 

  • Middaugh DP, Resnick SM, Lantz SE, Heard CS, Mueller JG (1993) Toxicological assessment of biodegraded pentachlorophenol: microtox and fish embryos. Arch Environ Contam Toxicol 24: 165–172

    CAS  Google Scholar 

  • Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK (1993) Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol 47: 139–166

    CAS  Google Scholar 

  • Naseby DC, Lynch JM (1997) Functional impact of genetically modified microorganisms on the soil ecosystem. In: Zelikoff JT (ed) Ecotoxicology: responses, biomarkers and risk assessment. SOS, Fair Haven, pp 419–442

    Google Scholar 

  • Ovreâs L (2000) Population and community level approaches for analyzing microbial diversity in natural environments. Ecol Lett 3: 236–251

    Google Scholar 

  • Petrikevich SB, Kobzev EN, Shkidchenko AN (2003) Estimation of hydrocarbon oxidizing activity of microorganisms. Appl Biochem Microbiol 39: 19–23

    CAS  Google Scholar 

  • Power M, van der Meer JR, Tchelet R, Egli T, Eggen R (1998) Molecular-based methods can contribute to assessments of toxicological risks and bioremediation strategies. J Microbiol Meth 32: 107–119

    CAS  Google Scholar 

  • Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15: 500–506

    CAS  Google Scholar 

  • Randall JD, Hemmington BB (1994) Evaluation of mineral agar plates for the enumeration of hydrocarbon-degrading bacteria. J Microbiol Meth 20: 103–113

    Google Scholar 

  • Raymond JW, Rogers TN, Shonnard DR (2001) A review of structure-based biodegradation estimation methods. J Hazard Mater B84: 189–215

    CAS  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67: 1542–1550

    CAS  Google Scholar 

  • Rogers KR, Gerlach CL (1999) Update on environmental biosensors. Environ Sci Technol 33: 500A - 506A

    CAS  Google Scholar 

  • Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67: 2649–2656

    CAS  Google Scholar 

  • Ronchel MC, Ramos-Diaz MA, Ramos JL (2000) Retrotransfer of DNA in the rhizosphere. Environ Microbiol 2: 319–323

    CAS  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65: 3056–3063

    CAS  Google Scholar 

  • Rosenberg E (1992) The hydrocarbon-oxidizing bacteria. In: Balows A (ed) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, Berlin Heidelberg New York, pp 446–459

    Google Scholar 

  • Rossel D, Tarradellas J, Bitton G, Morel JL (1997) Use of enzymes in ectotoxicology: a case for dehydrogenase and hydrolytic enzymes. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. CRC Lewis, Boca Raton, pp 179–192

    Google Scholar 

  • Shen Y, Stehmeier LG, G Voordouw G (1998) Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing. Appl Environ Microbiol 64: 637–645

    CAS  Google Scholar 

  • Shi Y, Zwolinski MD, Schreiber ME, Bahr JM, Sewell GW, Hickey WJ (1999) Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments. Appl Environ Microbiol 65: 2143–2150

    CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69: 483–489

    CAS  Google Scholar 

  • Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Pauls MJ, Jellison GE Jr (1998) Bioluminescent-bioreporter integrated circuits from novel whole cell biosensors. Trends Biotechnol 16: 332–338

    CAS  Google Scholar 

  • Singh A, Mullin B, Ward OP (2001) Reactor-based process for the biological treatment of petroleum wastes, PN # 200. Proceedings, Middle East Petrotech 2001 Conference, Bahrain, pp 1–13

    Google Scholar 

  • Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1: 307–317

    CAS  Google Scholar 

  • Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Fleming JT, Gregory IR, Sayler GS (1998) Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Meth 32: 165–178

    CAS  Google Scholar 

  • Stapleton RD, Bright NG, Sayler GS (2000) Catabolic and genetic diversity of degradative bacteria from fuel-hydrocarbon contaminated aquifers. Microb Ecol 39: 211–221

    CAS  Google Scholar 

  • Sticher P, Jasper MCM, Stemmler K, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63: 4053–4060

    CAS  Google Scholar 

  • Stotsky JB, Atlas RM (1994) Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Can J Microbiol 40: 981–985

    Google Scholar 

  • Telang AJ, Voordouw G, Ebert S, Sifeldeen N, Foght JM, Fedorak PM, Westlake DWS (1994) Characterization of the diversity of sulfate-reducing bacteria in soil and mining wastewater environments by nucleic acid hybridization techniques. Can J Microbiol 40: 955–964

    CAS  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63: 1785–1793

    CAS  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Voordouw G (1998) Effects of two diamine biocides on the microbial community of an oil field. Can J Microbiol 44: 1060–1065

    CAS  Google Scholar 

  • Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26: 37–57

    CAS  Google Scholar 

  • Thomassin-Lacroix EJM, Yu Z, Eriksson M, Reimer KJ, Mohn WW (2001) DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil. Can J Microbiol 47: 1107–1115

    CAS  Google Scholar 

  • Thouand G, Bauda P, Oudot G, Kirsch G, Sutton C, Vidalie JF (1999) Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45: 106–115

    CAS  Google Scholar 

  • Thurmann U, Zanto C, Schmitz C, Vomberg A, Püttman W, Klinner U (1999) Correlation between microbial ex situ activities of two neighboring uncontaminated and fuel oil contaminated subsurface sites. Biotechnol Tech 13: 271–275

    CAS  Google Scholar 

  • Torstensson L (1997) Microbial assays in soils. In: Taradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. CRC Lewis, Boca Raton, pp 207–233

    Google Scholar 

  • Van Elsas JD, Duarte GF, Rosado AS, Smalla K (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Meth 32: 133–154

    Google Scholar 

  • Van Emon JM, Gerlach CL (1998) Environmental monitoring and human exposure assessment using immunochemical techniques. J Microbiol Meth 32: 121–131

    Google Scholar 

  • Van Hamme JD, Ward OP (2000) Development of a method for the application of solid-phase microoextraction to monitor biodegradation of volatile hydrocarbons during bacterial growth on crude oil. J Ind Microbiol Biotechnol 25: 155–162

    Google Scholar 

  • Van Hamme JD, Odumeru JA, Ward OP (2000) Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can J Microbiol 46: 411–450

    Google Scholar 

  • Van Straalen NM (2002) Assessment of soil contamination-a functional perspective. Biodegradation 13: 41–52

    Google Scholar 

  • Venosa AD, Haines JR, Nisamaneepong W, Govind R, Pradhan S, Siddique B (1992) Efficacy of commercial products in enhancing oil biodegradation in closed laboratory reactors. J Ind Microbiol 10: 13–23

    CAS  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane degrading bacteria. J Appl Microbiol 89: 339–348

    CAS  Google Scholar 

  • Voordouw G, Shen Y, Harrington CS, Telang AJ, Jack TR, Westlake DWS (1993) Quantitative reverse sample genome probing of microbial communities and its application to oil-field production waters. Appl Environ Microbiol 59: 4101–4114

    CAS  Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62: 1623–1629

    CAS  Google Scholar 

  • US EPA (1999) Guide for Industrial waste management. United States Environmental Protection Agency, EPA 530-R-99–001

    Google Scholar 

  • Ward OP, Singh A (2000) Biodegradation of oil sludge. Canadian Patent #2,229,761 Ward OP, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30: 260–270

    CAS  Google Scholar 

  • White DC, Flemming CA, Leung KT, Macnaughton SJ (1998) In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms. J Microbiol Meth 32: 93–105

    CAS  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002a) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60: 45–59

    CAS  Google Scholar 

  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T (2002b) Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol 58: 202–209

    CAS  Google Scholar 

  • Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, Jackson PJ (1998) Development and testing of a bacterial biosensor for toluene based environmental contaminants. Appl Environ Microbiol 64: 16–1012

    Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35: 275–294

    CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29: 111–129

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, A., Kuhad, R.C., Shareefdeen, Z., Ward, O.P. (2004). Methods for Monitoring and Assessment of Bioremediation Processes. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics