Skip to main content

Liposome Phase Systems as Membrane Activity Sensors for Peptides

  • Chapter
Lipid Bilayers

Part of the book series: Biological Physics Series ((BIOMEDICAL))

Abstract

Anyone who is able to shake a beaker can make liposomes. The ease of liposome preparation is one of the secrets behind their success in many fields of science and technology. They are, however, among the most ill-defined and tricky systems as far as their physical chemistry is concerned. Here are just a few of their shortcomings:

  • size and shape heterogeneity, encompassing vastly different numbers of bilayer shells.

  • internal heterogeneity with regard to local solvation and curvature.

  • stacking defects.

  • not in thermodynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. Sadoc, J. Charvolin: Frustration in bilayers and topologies of liquid crystals of amphiphilic molecules, J. Phys. (Paris) Colloq. C3 47, 683–691 (1986)

    Google Scholar 

  2. J. M. Seddon, R. H. Templer: Polymorphism of lipid-water systems, in Handbook of Biological Physics, Vol. 1, ed. by R. Lipowsky, E. Sackmann (Elsevier Science, Amsterdam, 1995) pp. 97–160

    Google Scholar 

  3. P. Laggner: A highly a-helical structure protein in sacroplasmic reticulum membranes, Nature 255, 427–428 (1975)

    Article  ADS  Google Scholar 

  4. P. Laggner, D. E. Graham: The effect of a proteolipid from sarcoplasmic reticulum on the physical properties of artificial phospholipid membranes, Biochim. Biophys. Acta 433, 311–317 (1976)

    Article  Google Scholar 

  5. R. B. Gennis: Biomembranes: Molecular Structure and Function (Springer Verlag, New York, 1989)

    Google Scholar 

  6. S. E. Blondelle, K. Lohner, M.-L Aguilar: Induced conformation and lipid binding properties of cytolytic and antimicrobial peptides: Determination and biological specificity, Biochim. Biophys. Acta 1462, 89–108 (1999)

    Article  Google Scholar 

  7. H. W. Huang: Membrane specificities of antimicrobial peptides, in In Search of a New Biomembrane Model, ed. by O. G. Mouritsen, O. S. Andersen (Biolo-giske Skrifter 49, The Royal Danish Academy of Sciences and Letters, Munks-gaard, Copenhagen, 1998) pp. 87–92

    Google Scholar 

  8. S. G. Wilkinson: Gram-negative bacteria, in Microbial Lipids, ed. by C. Ra-tledge, S. G. Wilkinson (Academic Press, London, 1988) pp. 299–488

    Google Scholar 

  9. W. M. O’Leary, S. G. Wilkinson: Gram-positive bacteria, in Microbial Lipids, ed. by C. Rat ledge, S. G. Wilkinson (Academic Press, London, 1988) pp. 117–201

    Google Scholar 

  10. A. Latal, G. Degovics, K. Lohner: Phase separation of enriched phosphatidyl-glycerol domains in mixtures with phosphatidylethanolamine, Chem. Phys. Lipids 94, 161 (1998)

    Google Scholar 

  11. A. Latal, G. Degovics, R. F. Epand, R. M. Epand, K. Lohner: Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids, Europ. J. Biochem. 248, 938–946 (1997)

    Article  Google Scholar 

  12. G. Cevc, J. M. Seddon: Physical characterization, in Phospholipids Handbook, ed. by G. Cevc (Marcel Dekker, New York, 1993) pp. 351–401

    Google Scholar 

  13. H. J. Hilderson, G. B. Ralston: Physicochemical Methods in the Study of Biomembranes, Subcellular Biochemistry, Vol. 23 (Plenum Press, New York, 1994)

    Book  Google Scholar 

  14. P. Laggner, H. Mio: SWAX — a dual detector camera for simultaneous small-and wide-angle x-ray diffraction in polymer and liquid crystal research, Nucl. Instr. Meth. Phys. Res. A323, 86–90 (1992)

    ADS  Google Scholar 

  15. L. A. Feigin, D. I. Svergun: Structure Analysis by Small-angle X-ray and Neutron Scattering (Plenum Press, New York, 1987)

    Google Scholar 

  16. J. P. Cotton: Introduction to scattering experiments, in Neutron, X-ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems, ed. by P. Lindner, T. Zemb (Elsevier Science, Amsterdam, 1991) pp. 3–18

    Google Scholar 

  17. G. Zaccai: Application of neutron diffractions to biological problems, in Topics in Current Physics: Neutron Diffraction, ed. by H. Dachs (Springer Verlag, Berlin, 1978) pp. 243–270

    Chapter  Google Scholar 

  18. P. Laggner, H. Amenitsch, M. Kriechbaum, G. Pabst, M. Rappolt: Trapping of short-lived intermediates in phospholipid phase transitions: The Lphase, Faraday Disc. 111, 31–40 (1998)

    Article  ADS  Google Scholar 

  19. Q. Ye, R. L. Biltonen: Differential scanning and dynamic calorimetric studies of cooperative phase transitions in phospholipid bilayer membranes, in Physicochemical Methods in the Study of Biomembranes, ed. by H. J. Hilder-son, G. B. Ralston (Plenum Press, New York, 1994) pp. 121–160

    Chapter  Google Scholar 

  20. J. Seelig: Titration calorimetry of lipid-peptide interactions, Biochim. Bio-phys. Acta 1331, 103–116 (1997)

    Google Scholar 

  21. A. Derksen, D. Gantz, D. M. Small: Calorimetry of apolipoprotein-Al binding to phosphatidylcholine-krioline-cholesterol emulsions, Biophys. J. 70, 330–338 (1995)

    Article  Google Scholar 

  22. G. Keller, F. Lavigne, L. Fork, K. Andrieux, M. Dahin, C. Loisel, M. Ollivon, C. Bourgeaux, P. Lesieur: DSC and x-ray diffraction coupling: Specifications and applications, J. Therm. Anal. 51, 783–791 (1998)

    Google Scholar 

  23. P. Laggner, H. Stabinger: The partial specific volume changes involved in the thermotropic phase transitions of pure and mixed lecithins, in Colloid and Interface Science, Vol. V, ed. by M. Kerker (Academic Press, New York, 1976) pp. 91–96

    Chapter  Google Scholar 

  24. D. P. Kharakoz, A. Colotto, K. Lohner, P. Laggner: Fluid-gel interphase line tension and density fluctuations in DPPC multilayer vesicles. An ultrasonic study, J. Phys. Chem. 97, 9844–9851 (1993)

    Article  Google Scholar 

  25. E. Dempsey: The actions of melittin on membranes, Biochim. Biophys. Acta 1031, 143–161 (1990)

    Article  Google Scholar 

  26. G. Saberwal, R. Nagaraj: Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes — facets of their conformational features, structure-function correlations and membrane-perturbing abilities, Biochim. Biophys. Acta 1197, 109–131 (1994)

    Article  Google Scholar 

  27. G. Sessa, J. H. Freer, G. Colacicco, G. Weissmann: Interaction of a lytic polypeptide, melittin, with lipid membrane systems, J. Biol. Chem. 244, 3575–3582 (1969)

    Google Scholar 

  28. H. G. Boman, D. Wade, I. A. Boman, B. Wahlin, R. B. Merrifield: Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids, FEBS Lett. 259, 103–106 (1989)

    Article  Google Scholar 

  29. S. C. Quay, C. C. Condie: Conformational studies of aqueous melittin: Thermodynamic parameters of the monomer-tetramer self-association reaction, Biochemistry 22, 695–700 (1983)

    Article  Google Scholar 

  30. T. C. Terwilliger, L. Weissman, D. Eisenberg: The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities, Biophys. J. 37, 353–361 (1982)

    Article  Google Scholar 

  31. L. R. Brown, J. Lauterwein, K. Wuthrich: High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution, Biochim. Biophys. Acta 622, 231–244 (1980)

    Article  Google Scholar 

  32. V. M. Dhople, R. Nagaraj: S-Toxin, unlike melittin, has only hemolytic activ-ity: Rationalization of this specific biological activity, Biosci. Rep. 13, 245–250 (1993)

    Google Scholar 

  33. M. Bhakoo, T. H. Birkbeck, J. H. Freer: Phospholipid-dependent changes in membrane permeability by staphylococcal δ-lysin and bee venom melittin, Can. J. Biochem. Cell Biol. 63, 1–6 (1985)

    Article  Google Scholar 

  34. E. Thiaudiere, O. Siffert, J.-C. Talbot, J. Bolard, J. E. Alouf, J. Dufourcq: The amphiphilic α-helix concept. Consequences on the structure of staphylococcal δ-toxin in solution and bound to lipids, Eur. J. Biochem. 195, 203–213 (1991)

    Article  Google Scholar 

  35. L. Garone, J. E. Fitton, R. F. Steiner: The interaction of δ-hemolysin with calmodulin, Biophys. Chem. 31, 231–245 (1988)

    Google Scholar 

  36. K. H. Lee, J. E. Fitton, K. Wuthrich: Nuclear magnetic resonance investigation of the conformation of δ-haemolysin bound to dodecylphosphatidylcholine micelles, Biochim. Biophys. Acta 911, 144–153 (1987)

    Article  Google Scholar 

  37. M. Posch, U. Rakusch, C. Mollay, P. Laggner: Cooperative effects in the interaction between melittin and phosphatidylcholine model membranes. Studies by Temperature Scanning Densitometry, J. Biol. Chem. 258, 1761–1766 (1983)

    Google Scholar 

  38. A. Colotto, D. P. Kharakoz, K. Lohner, P. Laggner: Ultrasonic Study of Melittin Effects on Phospholipid Model Membranes, Biophys. J. 65, 2360–2367 (1993)

    Article  Google Scholar 

  39. A. Colotto: Interaction Between Toxic Peptides and Model Membranes: Structural and Thermodynamic Characterization, D.Sc. Thesis (Karl-Franzens-Universitat Graz, 1993)

    Google Scholar 

  40. A. Colotto, K. Lohner, P. Laggner: Small-angle x-ray diffraction studies on the effects of melittin on lipid bilayer assemblies, J. Appl. Cryst. 24, 847–851 (1991)

    Article  Google Scholar 

  41. K. Lohner, P. Laggner, J. H. Freer: Dilatometric and calorimetric studies on the effects of a staphylococcus protein on the phospholipid phase transition, J. Solution Chem. 15, 189–198 (1986)

    Article  Google Scholar 

  42. P. F. F. W. Almeida, W. L. C. Vaz, T. E. Thompson: Percolation and diffusion in three-component lipid bilayers: effect of cholesterol on an equimolar mixture of two phosphatidylcholines, Biophys. J. 64, 399–412 (1993)

    Article  Google Scholar 

  43. K. Lohner, E. Staudegger, E. J. Prenner, R. N. A. H. Lewis, M. Kriechbaum, G. Degovics and R. N. McElhaney: Effect of staphylococcal δ-lysin on the ther-motropic phase behavior and vesicle morphology of dimyristoyl phosphatidyl-choline lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and x-ray diffraction studies, Biochemistry 38, 16514–16528 (1999)

    Article  Google Scholar 

  44. E. J. Dufourcq, J.-F. Faucon, G. Fourche, J.-L. Dasseux, M. L. Maire, T. Gulik-Krzywicki: Morphological changes of phosphatidylcholine bilayers induced by melittin: Vesicularization, fusion, discoidal particles, Biochim. Biophys. Acta 859, 33–48 (1986)

    Article  Google Scholar 

  45. R. Mellor, D. H. Thomas, M. S. P. Sansom: Properties of ion channels formed by Staphylococcus aureus delta-toxin, Biochim. Biophys. Acta 942, 280–294 (1988)

    Article  Google Scholar 

  46. K. Lohner, E. Prenner: Differential scanning calorimetry and x-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems, Biochim. Biophys. Acta 1462, 141–156 (1999)

    Article  Google Scholar 

  47. K. Lohner, E. Staudegger: Are we on the threshold of the post-antibiotic era?, in Development of Novel Antimicrobial Agents: Emerging Strategies, ed. by K. Lohner (Horizon Scientific Press) submitted

    Google Scholar 

  48. V. Erspamer: Half a century of comparative research on biogenic-amines and active peptides in amphibian skin and molluscan tissues, Comp. Biochem. < Biophysiol. C-Comp. Pharmacol. < Toxicol. 79, 1–7 (1984)

    Article  Google Scholar 

  49. M. G. Giovannini, L. Poulter, B. W. Gibson, D. H. Williams: Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones, Biochem. J. 234, 113–120 (1987)

    Google Scholar 

  50. D. Andreu, H. Aschauer, G. Kreil, R. B. Merrifield: Solid-phase synthesis of PYLa and isolation of its natural counterpart, PGL [PYLa-(4–24)] from skin secretion of Xenopus laevis, Eur. J. Biochem. 149, 531–535 (1985)

    Article  Google Scholar 

  51. D. Juretic, R. W. Hendler, J. H. Brown, H. C. Chen, J. L. Morell, H. V. West-erhoff: Magainin-2 amide and analogs — antimicrobial activity, membrane depolarization and susceptibility to proteolysis, FEBS Lett. 249, 219–223 (1989)

    Article  Google Scholar 

  52. E. Soravia, G. Martini, M. Zasloff: Antimicrobial properties of peptides from Xenopus granular gland secretions, FEBS Lett. 228, 337–340 (1988)

    Article  Google Scholar 

  53. M. Jackson, H. H. Mantsch, J. H. Spencer: Conformation of magainin-2 and related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy, Biochemistry 31, 7289–7293 (1992)

    Article  Google Scholar 

  54. B. Bechinger, M. Zasloff, S. J. Opella: Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy, Biophys. J. 74, 981–987 (1998)

    Article  Google Scholar 

  55. K. Lohner, A. Latal, R. I. Lehrer, T. Ganz: Differential scanning mi-crocalorimetry indicates that human defensin, HNP-2, interacts specifically with biomembrane mimetic systems, Biochemistry 6, 1525–1531 (1997)

    Article  Google Scholar 

  56. A. Tardieu, V. Luzzati, F. C. Reman: Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases, J. Mol. Biol. 75, 711–733 (1973)

    Article  Google Scholar 

  57. P. Laggner: Lipoproteins in membranes, in Small Angle X-ray Scattering, ed. by. O. Glatter, O. Kratky (Academic Press, London, 1982) pp. 329–359

    Google Scholar 

  58. E. Staudegger, E. J. Prenner, M. Kriechbaum, G. Degovics, R. N. A. H. Lewis, R. N. McElhaney, K. Lohner: X-ray studies on the interaction of gramicidin S with microbial lipid extracts: Evidence for cubic phase formation, submitted

    Google Scholar 

  59. Y. Wu, K. He, S. J. Ludtke, H. W. Huang: X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: Diphytanoyl phosphatidylcholine with alamethicin at low concentrations, Biophys. J. 68, 2361–2369 (1995)

    Article  Google Scholar 

  60. K. He, S. J. Ludtke, W. T. Heller, H. W. Huang: Mechanism of alamethicin insertion into lipid bilayers, Biophys. J. 71, 2669–2897 (1996)

    Article  Google Scholar 

  61. S. J. Ludtke, K. He, H. W. Huang: Membrane thinning caused by magainin 2, Biochemistry 34, 16764–16769 (1995)

    Article  Google Scholar 

  62. J. A. Killian: Hydrophobic mismatch between proteins and lipids in membranes, Biochim. Biophys. Acta 1376, 401–416 (1998).

    Article  Google Scholar 

  63. H. W. Huang: Peptide-lipid interactions and mechanisms of antimicrobial peptides, Novartis Found. Symp. 225, 188–200 (1999)

    Google Scholar 

  64. E. A. Evans, D. Needham: Physical properties of surfactant bilayer membranes: Thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions, J. Phys. Chem. 91, 4219–4228 (1987)

    Article  Google Scholar 

  65. K. Gekko, H. Noguchi: Compressibility of globular proteins in water at 25°C, J. Phys. Chem. 83, 2706–2714 (1979)

    Article  Google Scholar 

  66. T. A. Harroun, W. T. Heller, T. M. Weiss, L. Yang, H. W. Huang: Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin, Biophys. J. 76, 3176–3185 (1999)

    Article  Google Scholar 

  67. G. F. Gause, M. G. Brazhnikova: Gramicidin S and its use in the treatment of infected wounds, Nature (Lond) 154, 703 (1944)

    Article  ADS  Google Scholar 

  68. E. J. Prenner, R. N. A. H. Lewis, R. N. McElhaney: The interaction of antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes, Biochim. Biophys. Acta 1462, 201–221 (1999)

    Article  Google Scholar 

  69. M. Waki, N. Izumiya: Recent Advances in the biotechnology of β-lactams and microbial bioactive peptides, in Biochemistry of Peptide Antibiotics, ed. by H. Kleinhaug, H. van Doren (Walter de Gruyter, Berlin, 1990) pp. 205–244

    Google Scholar 

  70. L. H. Kondejewski, S. W. Farmer, D. S. Wishart, C. M. Kay, R. E. W. Hancock, R. S. Hodges: Gramicidin S is active against both gram-positive and gram-negative bacteria, Int. J. Pept. Protein Res. 47, 460–466 (1996)

    Article  Google Scholar 

  71. L. H. Kondejewski, S. W. Farmer, D. S. Wishart, C. M. Kay, R. E. W. Hancock, R. S. Hodges: Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs, J. Biol. Chem. 271, 25261–25268 (1996)

    Article  Google Scholar 

  72. N. Izumiya, T. Kato, H. Aoyaga, M. Waki, M. Kondo: Relationship between the primary structure and activity of gramicidin S and tyrocidines in Synthetic Aspects of Biologically Active Cyclic Peptides: Gramicidin S and Tyrocidines, ed. by N. Izumiya, T. Kato, H. Aoyaga, M. Waki, M. Kondo (Halsted Press, New York, 1979) pp. 49–70

    Google Scholar 

  73. E. J. Prenner, R. N. A. H. Lewis, K. C. Neuman, S. M. Gruner, L. H. Kondejewski, R. S. Hodges, R. N. McElhaney: Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity, Biochemistry 36, 7906–7916 (1997)

    Article  Google Scholar 

  74. E. J. Prenner, R. N. A. H. Lewis, L. H. Kondejewski, R. S. Hodges, R. N. McElhaney: Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bi-layer membranes, Biochim. Biophys. Acta 1417, 211–223 (1999)

    Article  Google Scholar 

  75. S. L. Keller, S. M. Gruner, K. Gawrisch: Small concentrations of alamethicin induce a cubic phase in bulk phosphatidylethanolamine mixtures, Biochim. Biophys. Acta 1278, 241–246 (1996)

    Article  Google Scholar 

  76. J. A. Killian, K. N. Burger, B. de Kruijff: Phase separation and hexagonal Hn phase formation by gramicidins A, B and C in dioleoylphosphatidylcholine model membranes. A study on the role of the tryptophan residues, Biochim. Biophys. Acta 897, 269–284 (1987)

    Article  Google Scholar 

  77. J. A. Killian, K. U. Prasad, D. W. Urry, B. de Kruijff: A mismatch between the length of gramicidin and the lipid acyl chains is a prerequisite for Hn phase formation in phosphatidylcholine model membranes, Biochim. Biophys. Acta 978, 341–345 (1989)

    Article  Google Scholar 

  78. P. R. Cullis, B. de Kruijff: Lipid polymorphism and the functional role of lipids in biological membranes, Biochim. Biophys. Acta 559, 399–420 (1979)

    Article  Google Scholar 

  79. J. N. Israelachvili, R. G. Horn, S. Marcelja: Physical principles of membrane organization, Q. Rev. Biophys. 13, 121–200 (1980)

    Article  Google Scholar 

  80. S. M. Gruner: Stability of lyotropic phases with curved interfaces, J. Phys. Chem. 93, 7562–7570 (1989)

    Article  Google Scholar 

  81. S.-W. Hui, A. Sen: Effects of lipid packing on polymorphic phase behavior and membrane properties, Proc. Natl. Acad. Sci. USA 86, 5825–5829 (1989)

    Article  ADS  Google Scholar 

  82. K. Lohner: Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes?, Chem. Phys. Lipids 81, 167–184 (1996)

    Article  Google Scholar 

  83. R. M. Epand: Lipid Polymorphism and Membrane Properties, Current Topics in Membranes, Vol. 44 (Academic Press, San Diego, London, 1997)

    Google Scholar 

  84. B. de Kruijff: Biomembranes. Lipids beyond the bilayer, Nature 386, 129–130 (1997)

    Article  ADS  Google Scholar 

  85. R. M. Epand, R. F. Epand: Calorimetric detection of curvature strain in phospholipid bilayers, Biophys. J. 66, 1450–1456 (1994)

    Article  Google Scholar 

  86. S. Marcelja: Towards a realistic theory of the interaction of membrane inclusions, Biophys. J. 76, 593–594 (1999)

    Article  Google Scholar 

  87. K. Lohner, R. M. Epand: Membrane interactions of hemolytic and antibacterial peptides, Adv. Biophys. Chem. 6, 53–56 (1997)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laggner, P., Lohner, K. (2001). Liposome Phase Systems as Membrane Activity Sensors for Peptides. In: Lipid Bilayers. Biological Physics Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04496-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04496-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08702-8

  • Online ISBN: 978-3-662-04496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics