Electromagnetic Noise and Quantum Optical Measurements

Springer-Verlag Berlin Heidelberg GmbH

ONLINE LIBRARY Physics and Astronomy

http://www.springer.de/phys/

Advanced Texts in Physics

This program of advanced texts covers a broad spectrum of topics which are of current and emerging interest in physics. Each book provides a comprehensive and yet accessible introduction to a field at the forefront of modern research. As such, these texts are intended for senior undergraduate and graduate students at the MS and PhD level; however, research scientists seeking an introduction to particular areas of physics will also benefit from the titles in this collection.

Electromagnetic Noise and Quantum Optical Measurements

With 151 Figures and 117 Problems with 41 Selected Solutions

Solutions Manual for Instructors on Request Directly from Springer-Verlag

Professor Hermann A. Haus

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Sciences Vassar Street 50, Office 36-345 Cambridge, MA 02139, USA E-mail: haus@mit.edu

Library of Congress Cataloging-in-Publication Data

Haus, Hermann A.

Electromagnetic noise and quantum optical measurements / Hermann Haus.
p. cm. -- (Advanced texts in physics, ISSN 1439-2674)
Includes bibliographical references and index.
ISBN 978-3-642-08462-1 ISBN 978-3-662-04190-1 (eBook)
DOI 10.1007/978-3-662-04190-1
1. Electronic circuits--Noise. 2. Electromagnetic noise--Measurement. 3. Quantum

optics--Measurement. 4. Optoelectronic devices--Noise. 5. Interference (Light) I. Title. II. Series.

TK7867.5 .H38 2000 621.382'24--dc21

99-045237

ISSN 1439-2674

ISBN 978-3-642-08462-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 2000 Originally published by Springer-Verlag Berlin Heidelberg New York in 2000 Softcover reprint of the hardcover 1st edition 2000

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera ready from the author using a Springer T_EX macro package Cover design: *design & production* GmbH, Heidelberg

Printed on acid-free paper SPIN 10701179 56/3141/di 5 4 3 2 1 0

Preface

Throughout my professional career I have been fascinated by problems involving electrical noise. In this book I would like to describe aspects of electrical noise somewhat in the manner of a Russian matryoshka doll, in which each shell contains a different doll, alluding to deeper and deeper meanings hidden inside as outer appearances are peeled away.

Let us look at some dictionary definitions of noise. Surprisingly, the origin of the word in the English language is unknown. The Oxford Universal Dictionary (1955) has the following definition: "Noise. 1. loud outcry, clamour or shouting; din or disturbance; common talk, rumour, evil report, scandal – 1734. A loud or harsh sound of any kind; a din . . . An agreeable or melodious sound. Now rare, ME. A company or band of musicians."

This is not a helpful definition of the technical meaning of noise. The Supplement to the Oxford English Dictionary (1989) lists the following: "Noise. 7. In scientific use, a collective term (used without the indefinite article) for: fluctuations or disturbances (usu. irregular) which are not part of a wanted signal, or which interfere with its intelligibility or usefulness."

The last definition is an appropriate one and relates to the work of Prof. Norbert Wiener who developed the mathematics of statistical functions in the 1930s and 1940s. To this day I am awed by the power of mathematical prediction of averages of outcomes of statistically fluctuating quantities. These predictions extend to the theory of and experiments on noise.

Let us look at the interpretation in other languages of the word used for the technical term "noise".

In German	Rauschen: rush, rustle, murmur, roar, thunder, (poet.) sough.
In Russian	<i>shum</i> : noise, hubbub, uproar; <i>vetra</i> , <i>voln</i> : sound of wind, waves.
In French	<i>bruit</i> : noise, din, racket, uproar, commotion, clamor; (fig.) tumult, sedition; fame, renown, reputation; <i>beaucoup de bruit pour rien</i> , much ado about nothing.
In Italian	rumore: noise, din, clamor, outcry, uproar; rumor.

It is interesting how different languages attach different meanings to noise. The German and Russian origins are onomatopoetic, simulating the sound of rushing water or rustling of leaves, and do not necessarily possess the connotation of unpleasantness. The French and Italian words have more abstract meanings. Surprisingly, in French, it describes characteristics of persons who stick out, are famous. In Italian it is clearly related to the word "rumor". The etymology of the word "noise" is a glimpse of the complexity and subtlety of the meanings attached to words by different cultures. In the world of physics and technology, noise is equally multifaceted.

A fascinating fact is that the ear is adjusted to have the highest allowed sensitivity without being disturbed by one of the fundamental sources of noise, thermal noise. Thermal noise is the agitation experienced by the molecules in gases, liquids, and solids at all temperatures above absolute zero (on the Kelvin scale). The molecules of air bounce around and hit the eardrums in a continuous pelting "rain" of particles. If the ear were sensitive to that bombardment, one would hear a continuous hissing noise comparable to that of the noise of a radio tuned between stations with the volume turned up. A simple computation finds that the power impinging upon the ear from this thermal noise is of the order of 0.3×10^{-12} W, a third of the threshold of hearing [1], a rather remarkable fact.

Many of us have experienced the strange sensation that is produced when a large shell is held to the ear. Popularly this is known as "hearing the ocean". In fact, this effect is due to the noise of the air particles impinging upon the ear, enhanced by the shell acting as a resonator. Thus, even a normal ear can hear the air particles impinging upon the ear when the effect is enhanced by some means. Later in this book we shall learn how resonators enhance the spectrum of noise near their resonance frequency.

My interest in noise, reflected in the content of this book, was and is mainly in electrical and optical noise. It is not hard to understand the origin of electrical noise, at least the one related to the agitation of particles. Particles with charge are surrounded by fields which, in turn, produce charge accumulation (of opposite sign) in surrounding electrodes. As the particles bounce around when driven by thermal effects or quantum effects, the charges in the electrodes are dragged along and produce spurious currents, noise currents.

Electrical communications engineers worry about noise because they have to discern signals in the presence of such background noise. In all cases in which the background noise is worrisome, the signals are weak so that amplifiers are needed to raise their power to detectable levels. Amplifiers add noise of their own to the background noise. The ultimate source of lowfrequency (including microwave) amplifier noise is the "graininess of the electrical charge". This fact was recognized in its full significance by Schottky in his classic paper in 1918 [2]. I quote from Schottky (my English translation): Cascading of vacuum tube amplifiers has made possible in recent years the detection and measurement of alternating currents of exceedingly small amplitude. Many technical tasks have thereby realized a sudden benefit, but also a new field of research has been opened up. The new amplifying circuits have the same impact on electrical studies as the microscope has had for optics. Because no clear limit has appeared to date on the achievable amplification, one could hope to advance to the infinitesimally small by proper shielding, interference-free layouts, etc. of the amplifying circuits; the dream of "hearing the grass grow" has appeared achievable to mankind.

This is an allusion by Schottky to the sensory power ascribed by the brothers Grimm fairy tales to particularly endowed individuals. In the sequel he shows that the dream will not come true and I quote:

The first insurmountable obstacle is provided, remarkably, by the size of the elementary quantum of electricity (the charge of the electron).

Schottky wrote his paper a decade before the formulation of the uncertainty principle of Heisenberg. Some of the noise generated in amplifiers and recognized by Schottky can be controlled. The amplifiers can be cooled or refrigerated. The shot noise can be reduced by utilizing the mutual repulsion among the negatively charged electrons. Schottky was careful to point out in his paper that, with the current densities achievable in his day, such repulsion could be ignored. In the intervening 75 years a great deal has happened and this research led to the development of ultra-low-noise amplifiers.

The fundamental limit of the noise performance of amplifiers is ultimately determined by quantum mechanics. This was the reason why I studied optical amplification, at frequencies at which the quantum effects of the electromagnetic field are observable, and at which quantum effects are, fundamentally, responsible for the noise performance of optical amplifiers. This very property of optical amplifiers makes them ideal models of quantum measurement apparatus and permits study of the theory of quantum measurement with the aid of simple optical measurement devices. This book thus spans the range from microwave propagation and amplification to optical propagation and amplification, all the way to issues of the theory of quantum measurement.

A book based on the work of 45 years clearly rests on collaboration with many individuals. Among those I should mention with gratitude are the late Prof. Richard B. Adler, Charles Freed, Dr. James Mullen, Prof. Y. Yamamoto, Dr. J. P. Gordon, and many past and present students. Among these, credit goes to Patrick Chou, John Fini, Leaf Jiang, Thomas Murphy, Steve Patterson, Michael Watts, William Wong, and Charles Yu for the careful reading of the manuscript that led to many corrections and suggestions for improvements.

VIII Preface

Research cannot do without financial support. Much of the early work was done with general funding by the Joint Services Electronics Program of the Research Laboratory of Electronics. More recently, as the funding became more program-specific, credit goes to the Office of Naval Research and Dr. Herschel S. Pilloff, who encouraged the research on squeezed-state generation, and Dr. Howard R. Schlossberg and the Air Force Office of Scientific Research, who funded the work on long-distance fiber communications.

I gratefully acknowledge the work by Ms. Mary Aldridge and Ms. Cindy Kopf, who typed the manuscript with exemplary patience and attention to detail. Ms. Cindy Kopf redrew and finished most of the figures in final form. I express my appreciation for the careful and thorough editing by Copy Editor Ms. Christine Tsorpatzidis.

Cambridge, Massachusetts July 2000 Hermann A. Haus

Contents

Introduction			1
1.	Max	well's Equations, Power, and Energy	11
	1.1	Maxwell's Field Equations	11
	1.2	Poynting's Theorem	15
	1.3	Energy and Power Relations and Symmetry of the Tensor $\overline{\overline{\epsilon}}$.	17
	1.4	Uniqueness Theorem	22
	1.5	The Complex Maxwell's Equations	23
	1.6	Operations with Complex Vectors	25
	1.7	The Complex Poynting Theorem	28
	1.8	The Reciprocity Theorem	33
	1.9	Summary	34
	Prob	lems	35
	Solut	ions	37
2.	Wav	eguides and Resonators	39
	2.1	The Fundamental Equations	
		of Homogeneous Isotropic Waveguides	39
	2.2	Transverse Electromagnetic Waves	44
	2.3	Transverse Magnetic Waves	47
	2.4	Transverse Electric Waves	53
		2.4.1 Mode Expansions	56
	2.5	Energy, Power, and Energy Velocity	59
		2.5.1 The Energy Theorem	59
		2.5.2 Energy Velocity and Group Velocity	60
		2.5.3 Energy Relations for Waveguide Modes	61
		2.5.4 A Perturbation Example	62
	2.6	The Modes of a Closed Cavity	64
	2.7	Real Character of Eigenvalues and Orthogonality of Modes .	67
	2.8	Electromagnetic Field Inside a Closed Cavity with Sources	72
	2.9	Analysis of Open Cavity	74
	2.10	Open Cavity with Single Input	77
		2.10.1 The Resonator and the Energy Theorem	78

		2.10.2 Perturbation Theory and the Generic Form
		of the Impedance Expression
	2.11	Reciprocal Multiports 83
	2.12	Simple Model of Resonator
	2.13	Coupling Between Two Resonators
	2.14	Summary
	Prob	lems
	Solut	ions
3.	Diffr	action, Dielectric Waveguides, Optical Fibers,
	and	the Kerr Effect
	3.1	Free-Space Propagation and Diffraction
	3.2	Modes in a Cylindrical Piecewise Uniform Dielectric 106
	3.3	Approximate Approach 109
	3.4	Perturbation Theory
	3.5	Propagation Along a Dispersive Fiber
	3.6	Solution of the Dispersion Equation for a Gaussian Pulse 115
	3.7	Propagation of a Polarized Wave
		in an Isotropic Kerr Medium 117
		3.7.1 Circular Polarization
	3.8	Summary
	Probl	lems
	Solut	ions
4.	Shot	Noise and Thermal Noise
	4.1	The Spectrum of Shot Noise
	4.2	The Probability Distribution of Shot Noise Events
	4.3	Thermal Noise in Waveguides and Transmission Lines 136
	4.4	The Noise of a Lossless Resonator
	4.5	The Noise of a Lossy Resonator 143
	4.6	Langevin Sources in a Waveguide with Loss 144
	4.7	Lossy Linear Multiports at Thermal Equilibrium 146
	4.8	The Probability Distribution of Photons
		at Thermal Equilibrium 150
	4.9	Gaussian Amplitude Distribution
		of Thermal Excitations 152
	4.10	Summary 154
	Probl	ems
	Solut	ions
5.	Line	ar Noisy Multiports
	5.1	Available and Exchangeable Power from a Source
	5.2	The Stationary Values of the Power Delivered
		by a Noisy Multiport and the Characteristic Noise Matrix $\ .\ .\ 160$

	5.3	The Characteristic Noise Matrix	
		in the Admittance Representation	
		Applied to a Field Effect Transistor	166
	5.4	Transformations of the Characteristic Noise Matrix	168
	5.5	Simplified Generic Forms of the Characteristic Noise Matrix.	172
	5.6	Noise Measure of an Amplifier	175
		5.6.1 Exchangeable Power	175
		5.6.2 Noise Figure	176
		5.6.3 Exchangeable Power Gain	177
		5.6.4 The Noise Measure and Its Optimum Value	179
	5.7	The Noise Measure in Terms of Incident	
		and Reflected Waves	181
		5.7.1 The Exchangeable Power Gain	183
		5.7.2 Excess Noise Figure	184
	5.8	Realization of Optimum Noise Performance	185
	5.9	Cascading of Amplifiers	189
	5.10	Summary	190
	Probl	ems	192
	Solut	ions	193
6.	Quar	ntum Theory of Waveguides and Resonators	197
	6.1	Quantum Theory of the Harmonic Oscillator	198
	6.2	Annihilation and Creation Operators	203
	6.3	Coherent States of the Electric Field	205
	6.4	Commutator Brackets, Heisenberg's Uncertainty Principle	000
	GE	Quantum Theory of an Open Beconster	209
	0.0	Quantum Theory of an Open Resonator	211
	0.0	Quantization of Excitations on a Single-Mode waveguide	210
	0.7 6.8	The Quantum Noise of an Amplifier	217
	0.8	with a Porfactly Inverted Medium	<u> </u>
	6.0	The Quantum Noise	220
	0.5	of an Imperfectly Inverted Amplifier Medium	223
	6 10	Noise in a Fiber with Loss Compensated by Gain	226
	6 11	The Lossy Resonator and the Laser Below Threshold	229
	6.12	Summary	237
	Probl	lems	238
	Solut	ions	239
7.	Class	sical and Quantum Analysis	0.17
	of Pl	hase-Insensitive Systems	241
	7.1	Renormalization of the Creation and Annihilation Operators	242
	7.2	Linear Lossless Multiports	_
		in the Classical and Quantum Domains	243

	7.3	Comparison of the Schrödinger and Heisenberg Formulations
		of Lossless Linear Multiports 248
	7.4	The Schrödinger Formulation and Entangled States 251
	7.5	Transformation of Coherent States
	7.6	Characteristic Functions and Probability Distributions 256
		7.6.1 Coherent State
		7.6.2 Bose–Einstein Distribution
	7.7	Two-Dimensional Characteristic Functions
		and the Wigner Distribution 259
	7.8	The Schrödinger Cat State and Its Wigner Distribution 263
	7.9	Passive and Active Multiports
	7.10	Optimum Noise Measure of a Quantum Network
	7.11	Summary
	Prob	lems
	Solut	cions
ø	Date	281
0.		Classical Description of Shot Noise
	0.1	and Heterodyme Detection 282
	82	Balanced Detection 285
	8.3	Quantum Description of Direct Detection 288
	8.4	Quantum Theory of Balanced Heterodyne Detection
	8.5	Linearized Analysis of Heterodyne Detection
	8.6	Heterodyne Detection of a Multimodal Signal
	87	Heterodyne Detection with Finite Response Time
	0.1	of Detector
	8.8	The Noise Penalty of a Simultaneous Measurement
		of Two Noncommuting Observables
	8.9	Summary
	Prob	lems
	Solut	tions
	-	
9.	Pho	ton Probability Distributions and Bit-Error Rate
	ofa	Channel with Optical Preamplification
	9.1	Moment Generating Functions
		9.1.1 Poisson Distribution
		9.1.2 Bose-Einstein Distribution
	0.0	9.1.3 Composite Processes
	9.2	Statistics of Attenuation
	9.3	Statistics of Optical Preamplification with Perfect Inversion. 314
	9.4	Statistics of Optical Freemplincation
	05	Rit Error Rate with Optical Proamplification
	9.0	0.5.1 Narrow Band Filter Polarized Signal and Noise 224
		9.5.1 Ivanow-Danu Filter, Foldized Signal, and Ivoise
		$5.5.2$ D roauband r mer, on potanted Dignat $\dots \dots \dots$

	9.6	Negentropy and Information	330
	9.7	The Noise Figure of Optical Amplifiers	333
	9.8	Summary	339
	Probl	ems	340
	Soluti	ions	342
10.	Solite	ons and Long-Distance Fiber Communications	345
	10.1	The Nonlinear Schrödinger Equation	346
	10.2	The First-Order Soliton	348
	10.3	Properties of Solitons	352
	10.4	Perturbation Theory of Solitons	354
	10.5	Amplifier Noise and the Gordon–Haus Effect	357
	10.6	Control Filters	361
	10.7	Erbium-Doped Fiber Amplifiers and the Effect	
		of Lumped Gain	365
	10.8	Polarization	367
	10.9	Continuum Generation by Soliton Perturbation	370
	10.10	Summary	374
	Probl	ems	376
	Soluti	ions	377
11.	Phas	e-Sensitive Amplification and Squeezing	379
	11.1	Classical Analysis of Parametric Amplification	380
	11.2	Quantum Analysis of Parametric Amplification	383
	11.3	The Nondegenerate Parametric Amplifier as a Model	
		of a Linear Phase-Insensitive Amplifier	386
	11.4	Classical Analysis	~~~
	-	of Degenerate Parametric Amplifier	387
	11.5	Quantum Analysis	200
	11 6	of Degenerate Parametric Ampliner	390
	11.0 11.7	Phase Measurement with Squeezed Vacuum	393
	11.7	The Laser Resonator Above Threshold	308
	11.0	The Electuations of the Photon Number	103
	11.9	The Schawlow–Townes Linewidth	405
	11.10	Squeezed Badiation from an Ideal Laser	408
	11 12	Summary	412
	Probl	ems	413
	Soluti	ions	414
	Soluti		
12.	Sque	ezing in Fibers	417
	12.1	Quantization of Nonlinear Waveguide	418
	12.2	The x Representation of Operators	420
	12.3	The Quantized Equation of Motion of the Kerr Effect	
		in the x Representation	422

	12.4	Squeezing
	12.5	Generation of Squeezed Vacuum
		with a Nonlinear Interferometer
	12.6	Squeezing Experiment 432
	12.7	Guided-Acoustic-Wave Brillouin Scattering
	12.8	Phase Measurement Below the Shot Noise Level 436
	12.9	Generation of Schrödinger Cat State via Kerr Effect 440
	12.10	Summary
	Prob	lems
	Solut	ions
13.	Qua	ntum Theory of Solitons and Squeezing
	13.1	The Hamiltonian and Equations of Motion
		of a Dispersive Waveguide 446
	13.2	The Quantized Nonlinear Schrödinger Equation
		and Its Linearization 449
	13.3	Soliton Perturbations Projected by the Adjoint 453
	13.4	Renormalization of the Soliton Operators 457
	13.5	Measurement of Operators 461
	13.6	Phase Measurement with Soliton-like Pulses 462
	13.7	Soliton Squeezing in a Fiber
	13.8	Summary
	Probl	ems
	Solut	ions
14.	Quar	ntum Nondemolition Measurements and the "Collapse"
	of th	e Wave Function
	14.1	General Properties of a QND Measurement 475
	14.2	A QND Measurement of Photon Number 475
	14.3	"Which Path" Experiment 481
	14.4	The "Collapse" of the Density Matrix 484
	14.5	Two Quantum Nondemolition Measurements in Cascade 490
	14.6	The Schrödinger Cat Thought Experiment 493
	14.7	Summary 497
	Probl	ems
	Solut	ions
Epi	logue	
Ap	pendi	ces
	A.1	Phase Velocity and Group Velocity of a Gaussian Beam 505
	A.2	The Hermite Gaussians and Their Defining Equation 506
		A.2.1 The Defining Equation of Hermite Gaussians 506
		A.2.2 Orthogonality Property of Hermite Gaussian Modes 507

	A.2.3 The Generating Function and Convolutions
	of Hermite Gaussians 508
A.3	Recursion Relations of Bessel Functions 512
A.4	Brief Review of Statistical Function Theory 513
A.5	The Different Normalizations of Field Amplitudes
	and of Annihilation Operators 515
	A.5.1 Normalization of Classical Field Amplitudes 515
	A.5.2 Normalization of Quantum Operators 516
A.6	Two Alternative Expressions for the Nyquist Source 517
A.7	Wave Functions and Operators in the n Representation 518
A.8	Heisenberg's Uncertainty Principle 523
A.9	The Quantized Open-Resonator Equations 524
A.10	Density Matrix and Characteristic Functions 527
	A.10.1 Example 1. Density Matrix of Bose–Einstein State 528
	A.10.2 Example 2. Density Matrix of Coherent State 528
A.11	Photon States and Beam Splitters 529
A.12	The Baker–Hausdorff Theorem 530
	A.12.1 Theorem 1
	A.12.2 Theorem 2
	A.12.3 Matrix Form of Theorem 1 531
	A.12.4 Matrix Form of Theorem 2 532
A.13	The Wigner Function of Position and Momentum 533
A.14	The Spectrum of Non-Return-to-Zero Messages 535
A.15	Various Transforms of Hyperbolic Secants 538
A.16	The Noise Sources Derived from a Lossless Multiport
	with Suppressed Terminals 541
A.17	The Noise Sources of an Active System
	Derived from Suppression of Ports 542
A.18	The Translation Operator and the Transformation
	of Coherent States from the β Representation
	to the x Representation
A.19	The Heisenberg Equation in the Presence of Dispersion 544
A.20	Gaussian Distributions and Their $e^{-1/2}$ Loci
Reference	ces
Index	