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Preface 

Throughout my professional career I have been fascinated by problems involv­
ing electrical noise. In this book I would like to describe aspects of electrical 
noise somewhat in the manner of a Russian matryoshka doll, in which each 
shell contains a different doll, alluding to deeper and deeper meanings hidden 
inside as outer appearances are peeled away. 

Let us look at some dictionary definitions of noise. Surprisingly, the origin 
of the word in the English language is unknown. The Oxfom Universal Dic­
tionary (1955) has the following definition: "Noise. 1. loud outcry, clamour 
or shoutingj din or disturbancej common talk, rumour, evil report, scandal-
1734. A loud or harsh sound of any kindj a din . .. An agreeable or melodious 
sound. Now rare, ME. A company or band of musicians." 

This is not a helpful definition of the technical meaning of noise. The Sup­
plement to the Oxford English Dictionary (1989) lists the following: "Noise. 
7. In scientific use, a collective term (used without the indefinite article) for: 
fluctuations or disturbances (usu. irregular) which are not part of a wanted 
signal, or which interfere with its intelligibility or usefulness." 

The last definition is an appropriate one and relates to the work of Prof. 
Norbert Wiener who developed the mathematics of statistical functions in 
the 1930s and 1940s. To this day I am awed by the power of mathemati­
cal prediction of averages of out comes of statistically fluctuating quantities. 
These predictions extend to the theory of and experiments on noise. 

Let us look at the interpretation in other languages of the word used for 
the technical term "noise". 

In German 

In Russian 

In French 

In Italian 

Rauschen: rush, rustle, murmur, roar, thunder, (poet.) 
sough. 

shum: noise, hubbub, uproarj vetra, voln: sound of 
wind, waves. 

bruit: noise, din, racket, uproar, commotion, clarnorj 
(fig.) tumult, seditionj farne, renown, reputationj beau­
coup de bruit pour rien, much ado about nothing. 

rumore: noise, din, clamor, outcry, uproarj rumor. 

It is interesting how different languages attach different meanings to noise. 
The German and Russian origins are onomatopoetic, simulating the sound of 
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rushing water or rustling of leaves, and do not necessarily possess the conno­
tation of unpleasantness. The French and Italian words have more abstract 
meanings. Surprisingly, in French, it describes characteristics of persons who 
stick out, are famous. In Italian it is clearly related to the word "rumor". The 
etymology of the word "noise" is a glimpse of the complexity and subtlety of 
the meanings attached to words by different cultures. In the world of physics 
and technology, noise is equally multifaceted. 

A fascinating fact is that the ear is adjusted to have the highest al­
lowed sensitivity without being disturbed by one of the fundamental sources 
of noise, thermal noise. Thermal noise is the agitation experienced by the 
molecules in gases, liquids, and solids at all temperatures above absolute 
zero (on the Kelvin scale). The molecules of air bounce around and hit the 
eardrums in a continuous pelting "rain" of particles. If the ear were sensitive 
to that bombardment, one would hear a continuous hissing noise comparable 
to that of the noise of a radio tuned between stations with the volume turned 
up. A simple computation finds that the power impinging upon the ear from 
this thermal noise is of the order of 0.3 x 10-12 W, a third of the threshold 
of hearing [1], a rather remarkable fact. 

Many of us have experienced the strange sensation that is produced when 
a large shell is held to the ear. Popularly this is known as "hearing the ocean". 
In fact, this effect is due to the noise of the air particles impinging upon the 
ear, enhanced by the shell acting as a resonator. Thus, even anormal ear can 
hear the air particles impinging upon the ear when the effect is enhanced by 
some means. Later in this book we shall learn how resonators enhance the 
spectrum of noise near their resonance frequency. 

My interest in noise, reflected in the content of this book, was and is 
mainly in electrical and optical noise. It is not hard to understand the ori­
gin of electrical noise, at least the one related to the agitation of particles. 
Particles with charge are surrounded by fields which, in turn, produce charge 
accumulation (of opposite sign) in surrounding electrodes. As the particles 
bounce around when driven by thermal effects or quantum effects, the charges 
in the electrodes are dragged along and produce spurious currents, noise cur­
rents. 

Electrical communications engineers worry about noise because they have 
to discern signals in the presence of such background noise. In all cases 
in which the background noise is worrisome, the signals are weak so that 
amplifiers are needed to raise their power to detectable levels. Amplifiers 
add noise of their own to the background noise. The ultimate source of low­
frequency (including microwave) amplijier noise is the "graininess ofthe elec­
trical charge". This fact was recognized in its full significance by Schottky in 
his classic paper in 1918 [2]. I quote from Schottky (my English translation): 
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Cascading of vacuum tube amplifiers has made possible in recent 
years the detection and measurement of alternating currents of 
exceedingly small amplitude. Many technical tasks have thereby 
realized a sud den benefit, but also a new field of research has been 
opened up. The new amplifying circuits have the same impact on 
electrical studies as the microscope has had for optics. Because no 
clear limit has appeared to date on the achievable amplification, 
one could hope to advance to the infinitesimally small by proper 
shielding, interference-free layouts, etc. of the amplifying circuits; 
the dream of "hearing the grass grow" has appeared achievable to 
mankind. 

This is an allusion by Schottky to the sensory power ascribed by the brothers 
Grimm fairy tales to particularly endowed individuals. In the sequel he shows 
that the dream will not come true and I quote: 

The first insurmountable obstacle is provided, remarkably, by the 
size of the elementary quantum of electricity (the charge of the 
electron). 

Schottky wrote his paper a decade before the formulation of the uncer­
tainty principle of Heisenberg. Some of the noise generated in amplifiers and 
recognized by Schottky can be controlled. The amplifiers can be cooled or 
refrigerated. The shot noise can be reduced by utilizing the mutual repulsion 
among the negatively charged electrons. Schottky was careful to point out in 
his paper that, with the current densities achievable in his day, such repulsion 
could be ignored. In the intervening 75 years a great deal has happened and 
this research led to the development of ultra-Iow-noise amplifiers. 

The fundamental limit of the noise performance of amplifiers is ultimately 
determined by quantum mechanics. This was the reason why I studied optical 
amplification, at frequencies at which the quantum effects of the electromag­
netic field are observable, and at which quantum effects are, fundamentally, 
responsible for the noise performance of optical amplifiers. This very prop­
erty of optical amplifiers makes them ideal models of quantum measurement 
apparatus and permits study of the theory of quantum measurement with the 
aid of simple optical measurement devices. This book thus spans the range 
from microwave propagation and amplification to optical propagation and 
amplification, all the way to issues of the theory of quantum measurement. 

A book based on the work of 45 years clearly rests on collaboration 
with many individuals. Among those I should mention with gratitude are 
the late Prof. Richard B. Adler, Charles Freed, Dr. James Mullen, Prof. Y. 
Yamamoto, Dr. J. P. Gordon, and many past and present students. Among 
these, credit goes to Patrick Chou, John Fini, Leaf Jiang, Thomas Murphy, 
Steve Patterson, Michael Watts, William Wong, and Charles Yu for the care­
ful reading of the manuscript that led to many corrections and suggestions 
for improvements. 
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