Skip to main content

Active Cell Death and Cancer

  • Conference paper
Apoptosis in Hormone-Dependent Cancers

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 14))

  • 46 Accesses

Abstract

Cancer development is a complex, multistage process in which failure of cell differentiation and proliferation control, for example, after activation of oncogenes, is considered to be an important causative factor. Relatively little attention has been paid to the role of cell death in cancer development, probably because for a long time in toxicology cell death was regarded as a passive degenerative phenomenon of secondary importance for the regulation of cell number in tissues. However, cell death is a biological phenomenon as important as cell proliferation. It serves to shape the final form of organisms during embryonic development and metamorphosis (Ellis et al. 1991; Glücksmann 1951; Lockshin and Williams 1964; Saunders 1966) and it counterbalances cell generation in adult tissues. Cell death is also a significant result of tissue damage and cause of disease (Farber et al. 1972; Kerr et al. 1972; Popper and Keppler 1986; Wyllie et al. 1980). Recently, new concepts have emerged related to the different types of cell death occurring in this wide variety of circumstances. In 1972 J. Kerr, A. Wyllie, and A. Currie proposed a classification of cell death into two broad categories. They introduced the concept of apoptosis to describe a form of active self-destruction of a cell which is under the control of the growth-regulating network and which — functionally speaking the opposite of mitosis — serves to downregulate the cell number in tissues (Kerr et al. 1972; Wyllie et al. 1980). According to this proposal, necrosis results from violent environmental perturbation, leading to rapid incapacitation of major cell functions (gene expression, ATP synthesis, membrane potential) and to the collapse of internal homeostasis. This concept eventually helped to elucidate the role of cell death in a variety of (patho)physiological states (Bursch et al. 1992; Fesus 1991; Korsmeyer 1992). Thus, during the past decades increasing evidence has accumulated showing that disturbance of apoptosis is involved in the pathogenesis of tumors (Bursch et al. 1992; Korsmeyer 1992; Sarraf and Bowen 1988; Vaux et al. 1988). Evidence for apoptosis was also found during regression of hormone-dependent tumors (Bursch 1994; Bursch et al. 1991; Gullino 1980; Kerr et al. 1972; Kyprianou et al. 1990, 1991; Lanzerotti and Gullino 1972; Szende et al. 1989, 1990). Thereby, the concept of apoptosis stimulated the development of new strategies for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan DJ, Howell A, Roberts SA, Williams GT, Watson RJ, Coyne JD, Clarke RB, Laidlaw IJ and Potten CS (1992) Reduction of apoptosis relative to mitosis in histologically normal epithelium accompanies fibrocystic change and carcinoma of the premenopausal human breast. J Pathol 167: 25–32

    Article  PubMed  CAS  Google Scholar 

  • Arends MJ, Morris RG and Wyllie AH (1990) Apoptosis — the role of endonuclease. Am J Pathol 136: 593–607

    PubMed  CAS  Google Scholar 

  • Bardon S, Vignon F, Montcourier P, Rochefort H (1987) Steroid receptor-mediated cytotoxicity of an antiestrogen and antiprogestin in breast cancer cells. Cancer Res 47: 1441–1448

    PubMed  CAS  Google Scholar 

  • Bellomo G, Perotti M, Taddei F, Mirabelli F, Finardi G, Nicotera P, Orrenius S (1992) Tumor necrosis factor alpha induces apoptosis in mammary adenocarcinoma cells by an increase in intracellular free Cat+ concentration and DNA fragmentation. Cancer Res 52: 1342–1346

    PubMed  CAS  Google Scholar 

  • Bissonette R, Echeverri F, Mahboubi A, Green D (1992) apoptotic cell death induced by c-myc is inhibited by bcl-. Nature 359: 552–554

    Google Scholar 

  • Brown DG, Sun XM, Cohen GM (1993) Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem 268: 3037–3039

    PubMed  CAS  Google Scholar 

  • Bursch W (1994) Apoptosis and cancer therapy. In: Workman P (ed) New approaches in cancer pharmacology: drug design and development, vol II. Springer, Berlin Heidelberg New York (European School of Oncology monographs) (in press)

    Google Scholar 

  • Bursch W, Lauer B, Timmermann-Trosiener I, Barthel G, Schuppler J, Schulte-Hermann R (1984) Controlled cell death (apoptosis) of normal and putative preneoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis 5: 453–458

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Taper HS, Lauer B, Schulte-Hermann R (1985) Quantitative histological and histochemical studies on the occurrence and stages of controlled cell death (apoptosis) during regression of rat liver hyperplasia. Virch Arch Cell Pathol 50: 153–166

    Article  CAS  Google Scholar 

  • Bursch W, Düsterberg B, Schulte-Hermann R (1986) Growth, regression and cell death in rat liver as related to tissue levels of the hepatomitogen cyproterone acetate. Arch Toxicol 59: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R (1990) Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11: 847–853

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Liehr JG, Sirbasku D, Putz B, Taper H, Schulte-Hermann R (1991) Control of cell death (apoptosis) by diethylstilbestrol in an estrogen dependent kidney tumor. Carcinogenesis 12: 855–860

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Oberhammer F, Schulte-Hermann R (1992) Cell death and its protective role against disease. Trends Pharmacol Sci 13: 245–251

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Oberhammer F, Jirtle RL, Askari M, Sedivy R, Grasl-Kraupp B, Purchio AF (1993) Transforming growth factor-(31 as a signal for induction of cell death by apoptosis. Br J Cancer 67: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Gleeson T, Kleine L, Tenniswood M (1994) Expression of clusterin (testosterone-repressed prostate message-2) mRNA during growth and regression of rat liver. Arch Toxicol (in press)

    Google Scholar 

  • Bursch W, Kienzl H, Ellinger A, Schulte-Hermann R Cell death in cultured human mammary carcinoma cells (MCF-7) after treatment with the antiestrogens tamoxifen and ICI 164 384. (Submitted)

    Google Scholar 

  • Buttyan R, Zakeri Z, Lockshin RA, Wohlgemuth D (1988) Cascade induction of c-fos, c-myc, and heat shock 70 k transcripts during regression of the rat ventral prostate gland. Mol Endocrinol 2: 650–657

    Article  PubMed  CAS  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.

    Article  PubMed  CAS  Google Scholar 

  • Clarke PH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181: 195–213

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skileter DN (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286: 331–334

    PubMed  CAS  Google Scholar 

  • Cohen JJ, Duke R, Fadok V, Sellins K (1992) Apoptosis and programmed cell death in immunity. Annu Rev Immunol 10: 267–293

    Article  PubMed  CAS  Google Scholar 

  • Collins RJ, Harmon V, Gobé GC, Kerr JFR (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61: 451–453

    Article  PubMed  CAS  Google Scholar 

  • Columbano A, Ledda-Columbano GM, Rao PM, Rajalakshmi S, Sarma DSR (1984) Occurrence of cell death (apoptosis) in preneoplastic and neoplastic liver cells: a sequential study. Am J Pathol 116: 441–446

    PubMed  CAS  Google Scholar 

  • Columbano A, Ledda-Columbano GM, Coni PP, Faa G, Liguori C, Santa Cruz G, Pani P (1985) Occurrence of cell death (apoptosis) during the involution of liver hyperplasia. Lab Invest 52: 670

    PubMed  CAS  Google Scholar 

  • Dini L, Autuori F, Lentini A, Oliverio S, Piancentini M (1992) The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett 296: 174–178

    Article  PubMed  CAS  Google Scholar 

  • Dive C, Hickman JA (1991) Drug-target interactions: only the first step in the commitment to a programmed cell death. Br J Cancer 64: 192–196

    Article  PubMed  CAS  Google Scholar 

  • Dive C, Evans CA, Whetton AD (1992) Induction of apoptosis — new targets for cancer chemotherapy. Semin Cancer Biol 3: 417–427

    PubMed  CAS  Google Scholar 

  • Eastman A (1990) Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 2: 275–280

    PubMed  CAS  Google Scholar 

  • Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidlyserine on the surface of apoptotic bodies triggers specific recognition and removal by macrophages. J Immunol 148: 2207–2216

    PubMed  CAS  Google Scholar 

  • Fanidi A, Harrington EA, Evan GI (1992) Cooperative interaction between cmyc and bc1–2 proto-oncogenes. Nature 359: 554–556

    Article  PubMed  CAS  Google Scholar 

  • Farber E, Cameron R (1980) The sequential analysis of cancer development. Adv Cancer Res 31: 125–225

    Article  PubMed  CAS  Google Scholar 

  • Farber E, Verbin RS, Lieberman M (1972) Cell suicide and cell death. In: Aldridge N (ed) A symposium on mechanisms of toxicology. Macmillan, New York, pp 163–173

    Google Scholar 

  • Fesus L (1991) Apoptosis fashions T and B cell repertoire. Immunol Lett 30: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Filipski J, Leblanc J, Youdale T, Sikorska M, Walker PR (1990) Periodicity of DNA folding in higher order chromatin structures. EMBO J 9: 1319–1327

    PubMed  CAS  Google Scholar 

  • Fukuda K, Kojiro M, Chiu, JF (1993) Induction of apoptosis by transforming growth factor-(31 in the rat hepatoma cell line McA-RH7777: a possible association with tissue transglutaminase expression. Hepatology 18: 945–953

    Article  PubMed  CAS  Google Scholar 

  • Garcea R, Daino L, Pascale R, Simile M, Puddu M, Frassetto S, Cozzolino P, Seddaiu MA, Gaspa L, Feo F (1989) Inhibition of promotion and persistent nodule growth by S-adenosyl-L-methionine in rat liver carcinogenesis: role of remodeling and apoptosis. Cancer Res 49: 1850–1856

    PubMed  CAS  Google Scholar 

  • Glücksmann A (1951) Cell death in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26: 59–86

    Article  Google Scholar 

  • Grasl-Kraupp B, Huber W, Taper H, Schulte-Hermann R (1991) Increased susceptibility of aged rats to hepatocarcinogenesis by the peroxisome proliferator nafenopin and the possible involvement of altered liver foci occurring spontaneously. Cancer Res 51: 666–671

    Google Scholar 

  • Grasl-Kraupp B, Huber W, Schulte-Hermann R (1993) Are peroxisome proliferators tumour promoters in rat liver? In: Gibson CG, Lake B (eds) Monograph on peroxisome proliferation. Taylor and Francis, London, pp 667–693

    Google Scholar 

  • Grasl-Kraupp B, Bursch W, Ruttkay-Nedecky B, Wagner A, Lauer B, Schulte-Hermann R (1994) Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver. PNAS 91: 9995–9999

    Article  PubMed  CAS  Google Scholar 

  • Grunicke H, Hofmann J (1992) Cytotoxic and cytostatic effects of antitumor agents induced at the plasma membrane level. Pharmacol Ther 55: 1–30

    Article  PubMed  CAS  Google Scholar 

  • Gullino PM (1980) The regression process in hormone-dependent mammary carcinomas. In: Iacobelli S, King RBJ, Lindner HR, Lippman ME (eds) Hormones and cancer. Raven, New York, pp 271–279

    Google Scholar 

  • Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499

    Article  PubMed  CAS  Google Scholar 

  • Hickman JA (1992) Membrane and signal transduction targets. In: Workman P, D’Incalci M (eds) New approaches in cancer pharmacology: drug design and development, vol I. Springer, Berlin Heidelberg New York, pp 33–46 (European School of Oncology monographs)

    Google Scholar 

  • Hockenberry D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bc1–2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336, 1990.

    Google Scholar 

  • Isaacs JT (1984) Antagonistic effect of androgen on prostatic cell death. Prostate 5: 545–557

    Article  PubMed  CAS  Google Scholar 

  • Jenne D, Tschopp J (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. TIBS 17: 154–159

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  • Kirszbaum L, Sharpe JA, Murphy B, d’Apice AJF, Classon B, Hudson P, Walker ID (1989) Molecular cloning and characterization of the novel, human complement-associated protein, SP-40,40: a link between the complement and reproductive systems. EMBO J 8: 711–718

    PubMed  CAS  Google Scholar 

  • Korsmeyer SJ (1992) Chromosomal translocation in lymphoid malignancies reveal novel proto-oncogenes. Annu Rev Immunol 10: 785–807

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Isaacs JT (1990) Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50: 3748–3753

    PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Davidson NE, Isaacs JT (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51: 162–166

    PubMed  CAS  Google Scholar 

  • Lanzerotti LH, Gullino PM (1972) Activity and quantity of lysosomal enzymes during mammary tumor regression. Cancer Res 32: 2679–2685

    PubMed  CAS  Google Scholar 

  • Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis. J Immunol 141: 2629–2633

    PubMed  CAS  Google Scholar 

  • Léger J, Le Guellec R, Tenniswood PR (1988) Treatment with antiandrogens induces an androgen repressed gene in the rat ventral prostate. Prostate 13: 131–142

    Article  PubMed  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor thirty-five years later. In Vitro Cell Dev Biol 23: 227–283

    Google Scholar 

  • Lin JK, Chou CK (1992) In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor beta 1. Cancer Res 52: 385–388

    PubMed  CAS  Google Scholar 

  • Lockshin RA, Beaulaton J (1974) Programmed cell death. Cytochemical evidence for lysosomes during the normal breakdown of the intersegmental muscles. J Ultrastruct Res 46: 43–62

    Google Scholar 

  • Lockshin RA, Williams CM (1964) Programmed cell death. II. Endocrine potentiation of the breakdown of the inter-segmental muscles of silk moths. J Insect Physiol 10: 643–649

    Google Scholar 

  • Lockshin RA, Williams CM (1965) Programmed cell death. I. Cytology of degeneration in the intersegmental muscles of the Pernyi silk moth. J Insect Physiol 11: 123–133

    Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849

    Google Scholar 

  • Luebeck EG, Moolgavkar SH, Buchmann A, Schwarz M (1991) Effects of polychlorinated biphenyls in rat liver: quantitative analysis of enzyme-altered foci. Toxicol Appl Pharmacol 111: 469–484

    Article  PubMed  CAS  Google Scholar 

  • MacDonald HR, Lees RK (1990) Programmed cell death of autoreactive thymocytes. Nature 343: 642–644

    Article  PubMed  CAS  Google Scholar 

  • Martz E, Howell DM (1989) CTL: virus control cells first and cytoloytic cells second? DNA fragmentation, apoptosis and the prelytic halt hypothesis. Immunol Today 10: 79–86

    Article  PubMed  CAS  Google Scholar 

  • Michna H, Nishino Y, Neef G, McGuire WL, Schneider MR (1992) Progesterone antagonists: tumor-inhibiting potential and mechanism of action. J Steroid Biochem Mol Bio141: 339–348

    Google Scholar 

  • Montpetit ML, Lawless KR, Tenniswood (1986) Androgen-repressed messages in the rat ventral prostate. Prostate 8: 25–36

    CAS  Google Scholar 

  • Moolgavkar SH, Luebeck EG, De Gunst M, Port RE, Schwarz M (1990) Quantitative analysis of enzyme-altered foci in rat hepatocarcinogenesis experiments I: single agent regimen. Carcinogenesis 11: 1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer F, Pavelka M, Sharma S, Tiefenbacher R, Purchio TA, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor-ßl. Proc Natl Acad Sci USA 89: 5408–5412

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer F, Bursch W, Tiefenbacher R, Fröschl G, Pavelka M, Purchio T, Schulte-Hermann R (1993a) Apoptosis is induced by transforming growth factor-ß1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology 18: 1238–1246

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M (1993b) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12: 3679–3684

    PubMed  CAS  Google Scholar 

  • Oberhammer F, Fritsch G, Schmied M, Pavelka M, Printz D, Purchio T, Lass-mann H (1993c) Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci 104: 317–326

    PubMed  CAS  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809

    Article  PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with conserved homolog, Bax, that accelerates programmed cell death. Cell 74 (4): 609–619

    Article  PubMed  CAS  Google Scholar 

  • Pascale RM, Marras V, Simile MM, Daino L, Inna G, Bennati S, Carta M, Seddaiu MA, Massarelli G, Feo F (1992) Chemoprevention of rat liver carcinogenesis by S-adenosyl-L-methionine: a long term study. Cancer Res 52: 4979–4986

    PubMed  CAS  Google Scholar 

  • Pitot HC, Sirica AE (1980) The stages of initiation and promotion in hepatocarcinogenesis. Biophys Acta 605: 191–215

    CAS  Google Scholar 

  • Popper H, Keppler D (1986) Networks of interacting mechanisms of hepatocellular degeneration and death. In: Popper H, Schaffner F (eds) Progress in liver disease, vol VIII. Grune and Stratton, Orlando, pp 209–236

    Google Scholar 

  • Redding TW, Schally AV, Radulovic S, Milovanovic S, Szepeshazi K, Isaacs JT (1992) Sustained release formulations of luteinizing hormone-releasing hormone antagonist SB-75 inhibit proliferation and enhance apoptotic cell death of human prostate carcinoma (PC-82) in male nude mice. Cancer Res 52: 2538–2544

    PubMed  CAS  Google Scholar 

  • Rotello RJ, Liebermann RC, Purchio A, Gerschenson LE (1991) Coordinated regulation of apoptosis and cell proliferation by transforming growth factor ß1 in cultured uterine epithelial cells. Proc Natl Acad Sci USA 88: 34123415

    Google Scholar 

  • Sarraf CE, Bowen ID (1986) Kinetic studies on a murine sarcoma and an analysis of apoptosis. Br J Cancer 54: 989–998

    Article  PubMed  CAS  Google Scholar 

  • Sarraf CE, Bowen ID (1988) Proportions of mitotic and apoptotic cells in a range of untreated experimental tumors. Cell Tissue Kinet 21: 45–49

    PubMed  CAS  Google Scholar 

  • Saunders JW (1966) Death in embryonic systems. Death of cells is the usual accompaniment of embryonic growth and differentiation. Science 54: 604612

    Google Scholar 

  • Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170–173

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Hermann R (1977) Two stage control of cell proliferation induced in rat liver by a-hexachlorocyclohexane. Cancer Res 37: 166–171

    PubMed  CAS  Google Scholar 

  • Schulte-Hermann R (1985) Tumor promotion in the liver. Arch Toxikol 57: 147–215

    Article  CAS  Google Scholar 

  • Schulte-Hermann R, Schuppler I, Timmermann-Trosiener I, Berger H (1983) The role of growth of normal and preneoplastic cell populations for tumor promotion in rat liver. Environ Health Perspect 50: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Hermann R, Bursch W, Fesus L, Kraupp B (1988) Cell death by apoptosis in normal, preneoplastic and neoplastic tissue. In: Feo F, Pani P, Columbano A, Garcea R (eds) Chemical carcinogenesis: models and mechanisms. Plenum, New York, pp 263–274

    Google Scholar 

  • Schulte-Hermann R, Timmermann-Trosiener I, Barthel G, Bursch W (1990) DNA synthesis, apoptosis and phenotypic expression as determinants of growth of altered foci in rat liver during phenobarbital promotion. Cancer Res 50: 5127–5135

    PubMed  CAS  Google Scholar 

  • Schwall RH, Robbins K, Jardieu P, Chang L, Lai C, Terrell TG (1993) Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology 18: 347356

    Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7: 253–266

    Article  Google Scholar 

  • Shinagawa T, Yoshioka K, Kamuku S, Wakita T, Ishikawa T, Itoh Y, Takayanagi M (1991) Apoptosis in cultured rat hepatocytes: the effects of tumor necrosis factor alpha and interferon gamma. J Pathol 165: 247–53

    Article  PubMed  CAS  Google Scholar 

  • Szende B, Zalatnai A, Schally AV (1989) Programmed cell death (apoptosis) in pancreatic cancers of hamsters after treatment with analogs of both luteinizing hormone-releasing hormone and somatostatin. Proc Natl Acad Sci USA 83: 1643–1647

    Article  Google Scholar 

  • Szende B, Srkalovic G, Groot K, Lapis K, Schally AV (1990) Regression of nitrosamine-induced pancreatic cancers in hamsters treated with luteinizing hormone-releasing hormone antagonists or agonists. Cancer Res 50: 37163721

    Google Scholar 

  • Szepeshazi K, Lapis K, Schally AV (1991) Effect of combination treatment with analogs of luteinizing hormone-releasing hormone (LH-RH) or somatostatin and 5-fluorouracil on pancreatic cancer in hamsters. Int J Cancer 49: 260–226

    Article  PubMed  CAS  Google Scholar 

  • Tenniswood M, Guenette RE, Lakins JL, Mooibroek M, Wong P, Welsh J (1992) Active cell death in hormone dependent tissues. Cancer Metastasis Rev 11: 197–220

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Kerr DJ, Steel CM (1991) Transforming growth factor [31 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 63: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Valverius EM, Walker-Jones D, Bates SE, Stampfer MR, Clark R, McCormick F, Dickson RB, Lippman ME (1989) Production of and responsiveness to transforming growth factor-13 in normal and oncogene-transformed human mammary epithelial cells. Cancer Res 49: 6269–6274

    PubMed  CAS  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bc1–2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442

    Google Scholar 

  • Walker PR, Kokileva L, LeBlanc J, Sikorska M (1993) Detection of the initial stages of DNA fragmentation in Apoptosis. Biotechniques 15 (6): 1032–1040

    PubMed  CAS  Google Scholar 

  • Warri AM, Huovinen RL, Laine AM, Marikainen PM, Härkönen PL (1993) Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst 85: 1412–1418

    Article  PubMed  CAS  Google Scholar 

  • Workman P, D’Incalci M, Berdel WE, Egorin MJ, Helene C, Hickman JA, Jarman M, Schwartsman G, Sikora K (1992) New approaches in cancer pharmacology: drug design and development. Eur J Cancer 28A: 1190–1200

    Article  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous activation. Nature 284: 555–556

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1985) The biology of cell death in tumors. Anticancer Res 5: 131136

    Google Scholar 

  • Wyllie AH, Kerr J, Currie A (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 115: 426–436

    Google Scholar 

  • Yanagihara K, Tsumuraya M (1992) Transforming growth factor beta 1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res 52: 4042–4045

    PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloiod leukemia cells that is inhibited by interleukin-6. Nature 352: 345–347

    Article  PubMed  CAS  Google Scholar 

  • Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleo- somal DNA fragmentation in programmed cell death. FASEB J 7: 470–478

    PubMed  CAS  Google Scholar 

  • Zugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R, Deschauer B, Simpson S, Dickson R, Lippman M (1991) Transforming growth factor [31 induces cachexia and systemic fibrosis without an antitumor effect. Cancer Res 51: 3590–3594

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bursch, W. et al. (1995). Active Cell Death and Cancer. In: Tenniswood, M., Michna, H. (eds) Apoptosis in Hormone-Dependent Cancers. Ernst Schering Research Foundation Workshop, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03122-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03122-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03124-7

  • Online ISBN: 978-3-662-03122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics