Skip to main content

The Scientific Basis

  • Chapter

Part of the book series: Schott Series on Glass and Glass Ceramics ((SCHOTT))

Abstract

With very few exceptions the numerous polymorphs of SiO2 all consist of SiO4 tetrahedra linked through their corners, thus forming three-dimensional framework structures. The topology of the tetrahedral linkage and the efficiency of space filling are different for the polymorphs. For a given type of framework, for example, that of quartz or cristobalite, space filling can be improved by so-called displacive transformations from a more open high-temperature form (e.g., “high”, “h”, or β “quartz”) to a denser form stable at lower temperatures (“low” or “α quartz”). These transformations do not change the topology of the framework, i.e., chemical bonds in a crystal can be deformed, but are not broken and rearranged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.T. Li: “The crystal structure of LiAlSi2O6III (high-quartz solid solution)”, Z. Kristallogr. 127, 327–348 (1968)

    Article  Google Scholar 

  2. H.G.F. Winkler: “Synthese und Kristallstruktur des Eukryptits, LiAlSiO4”, Acta Crystallogr. 1, 27–34 (1948)

    Article  Google Scholar 

  3. V. Tscherry, H. Schultz, F. Laves: “Average and superstructure of β-eucryptite (LiAlSiO4) I”, Z. Kristallogr. 135, 161–174 (1972)

    Article  Google Scholar 

  4. V. Tscherry, H. Schultz, F. Laves: “Average and superstructure of β-eucryptite (LiAlSiO4) IF”, Z. Kristallogr. 135, 175–198 (1972)

    Article  Google Scholar 

  5. W.W. Pillars, D.R. Peacor: “Crystal structure of beta eucryptite as a function of temperature”, Amer. Mineral. 58, 681–690 (1973)

    Google Scholar 

  6. H. Guth: “Strukturuntersuchungen an dem eindimensionalen Li-Ionenleiter β-Eukryptit (LiAlSiO4) mit Hilfe von Neutronenbeugung”, KfK-Bericht Nr. 2851, Kernforschungszentrum Karlsruhe (1979)

    Google Scholar 

  7. G. Steinmann: “Strukturuntersuchung an dem eindimensionalen Ionenleiter β-Eukryptit (LiAlSiO4) bei hohen Temperaturen (767 °C) mit Hilfe von Neutronenbeugung”, Diploma thesis, Universität Karlsruhe (1984)

    Google Scholar 

  8. C.T. Li, D.R. Peacor: “The crystal structure of LiAlSi2O6II (“β-spodumene”)”, Z. Kristallogr. 126, 46–65 (1968)

    Article  Google Scholar 

  9. C.T. Li: “Transformation mechanism between high-quartz and keatite phases of LiAlSi2O6 composition”, Acta Crystallogr. B 27, 1132–1140 (1971)

    Article  Google Scholar 

  10. F. Liebau: “Einteilung und Mechanismen von Phasenumwandlungen”, Fortschr. Mineral. 61, 29–84 (1983)

    Google Scholar 

  11. H. Schulz, W. Hoffmann, G.M. Muchow: “Average structure of Mg[AlSi3O10], a stuffed derivative of the high-quartz structure”, Z. Kristallogr. 134, 1–27 (1971)

    Article  Google Scholar 

  12. M. Behruzi, T. Hahn: “Struktur und thermische Ausdehnung des ungeordneten β-Eukryptits”, Fortschr. Mineral. 55, Beiheft 1, 12–13 (1977)

    Google Scholar 

  13. E.M. Levin, C.R. Robbins, H.F. McMurdie (eds.): Phase Diagrams for Ceramists, Amer. Ceram. Soc., Columbus (1968) p. 168

    Google Scholar 

  14. G.H. Beali, B.R. Karstetter, H.L. Rittler: “Crystallization and chemical strengthening of stuffed β-quartz glass ceramics”, J. Amer. Ceram. Soc. 50, 181–190 (1967)

    Article  Google Scholar 

  15. W. Schreyer, J.F. Schairer: “Metastable solid solutions with quartz-type structures on the join SiO2-MgAl2O4”, Z. Kristallogr. 116, 60–82 (1961)

    Article  Google Scholar 

  16. J. Petzoldt: “Metastabile Mischkristalle mit Quarzstruktur im Oxidsystem Li2O-MgO-ZnO-Al2O3-SiO2”, Glastechn. Ber. 40, 385–396 (1967)

    Google Scholar 

  17. S. Ray, G.M. Muchow: “High-quartz solid solution phases from thermally crystallizend glasses of compositions (Li2O, MgO) · Al2O3 · nSiO2”, J. Amer. Ceram. Soc. 51, 678–682 (1968)

    Article  Google Scholar 

  18. G.H. Beali, D.A. Duke: “Transparent glass-ceramics”, J. Mater. Sci. 4, 340–352 (1969)

    Article  ADS  Google Scholar 

  19. A.J. Perrotta, R.O. Savage: “Beta eucryptite crystalline solutions involving P5+”, J. Amer. Ceram. Soc. 50, 112 (1967)

    Article  Google Scholar 

  20. J. Petzoldt: “Der Einbau von P2O5 in metastabile Mischkristalle mit Quarzstruktur des Grundsystems Li2O-MgO-ZnO-Al2O3-SiO2” Glastechn. Ber. 41, 181–189 (1968)

    Google Scholar 

  21. S. Ray: “Solid solutions in the keatite crystal lattice”, J. Amer. Ceram. Soc. 54, 213–215 (1971)

    Article  Google Scholar 

  22. M. Behruzi, T. Hahn: “Hoch-LiAlSiO4 und verwandte Phasen im System LiAlSiO4-LiAlGeO4-LiGaGeO4”, Z. Kristallogr. 133, 405–421 (1971)

    Article  Google Scholar 

  23. B. Baumgartner, G. Müller: “Framework distortions by large ions in MAlSi2O6 alumino-silicates with keatite structure”, Eur. J. Mineral. 2, 155–162 (1990)

    Google Scholar 

  24. G. Müller, H. Paulus, J. Stiefel: “Synthesis and structure of β-quartz type Na0.5H0.5AlSi2O6 compared to LiAlSi2O6”, N. Jb. Miner. Mh., 493–503 (1990)

    Google Scholar 

  25. G. Müller, M. Hoffmann, R. Neeff: Hydrogen substitution in lithium-alumino-silicates, J. Mater. Sci. 23,1779–1785 (1988)

    Article  ADS  Google Scholar 

  26. M. Sternitzke, G. Müller: “Substitutional and thermal expansion in MAlSi2O6 aluminosilicates with keatite structure”, Eur. J. Mineral. 3, 769–776 (1991)

    Google Scholar 

  27. F.H. Gillery, E.A. Bush: “Thermal contraction of β-eucryptite (Li2O.Al2O3.2SiO2) by X-ray and dilatometer methods”, J. Amer. Ceram. Soc. 42, 175–177 (1959)

    Article  Google Scholar 

  28. J.S. Moya, A.G. Verduch, M. Hortal: “Thermal expansion of β-eucryptite solid solutions”, Trans. Brit. Ceram. Soc. 76, 177–178 (1974)

    Google Scholar 

  29. M. Hortal, R. Villar, S. Vieira, J.S. Moya: “Linear isothermal compressibilities of β-eucryptite”, J. Amer. Ceram. Soc. 58, 262 (1975)

    Article  Google Scholar 

  30. H. Schulz: “Thermal expansion of β-eucryptite”, J. Amer. Ceram. Soc. 57, 313–326 (1974)

    Article  Google Scholar 

  31. U. von Alpen, E. Schönherr, H. Schulz, G.H. Talat: “β-eucryptite, a one-dimensional Li-ionic conductor”, Electrochim. Acta 22, 805–807 (1977)

    Article  Google Scholar 

  32. R.A. Young: Mechanism of the phase transition in quartz (Georgia Institute of Technology, Atlanta, AFOSR-2569, 1962)

    Google Scholar 

  33. R.M. Hazen, L.E. Finger: Comparative crystal chemistry (John Wiley & Sons, Chichester, 1982)

    Google Scholar 

  34. H.T. Smyth: “The role of transverse oxygen vibrations in thermal expansion behaviour of glasses and crystals”, in Graham, M.G., Hagy, E.E.: Thermal expansion (American Inst. of Physics, New York, 1971)

    Google Scholar 

  35. H.D. Megaw: Crystal structures, a working approach (W.B. Saunders, Philadelphia, 1973)

    Google Scholar 

  36. R.J. Ackermann, C.A. Sorrell: “Thermal expansion and the high-low transformation in quartz I: High temperature X-ray studies”, J. Appl. Crystallogr. 7, 461–467 (1974)

    Article  Google Scholar 

  37. P.P. Keat: “A new crystalline silica”, Science 120, 328–330 (1954)

    Article  ADS  Google Scholar 

  38. G. Müller, M. Sternitzke: “Computer modelling of structure and thermal expansion of β-quartz- and keatite-type alumino-silicates”, J. Mater. Sci. Lett. 12, 278–280 (1993)

    Article  Google Scholar 

  39. M. Sternitzke, G. Müller: “Crystal structure and thermal expansion of quartz-type aluminosilicates”, J. Mater. Sci. 26, 3051–3056 (1991)

    Article  ADS  Google Scholar 

  40. J.W. Christian: The theory of transformations in metals and alloys (Pergamon Press Pt. 1. 2nd ed. Oxford 1975)

    Google Scholar 

  41. S. Toshev, I. Gutzow: “Time lag in heterogeneous nucleation due to non-stationary effects”, Phys. status Solidi 21 683–691, (1967) no. 2

    Article  Google Scholar 

  42. U. Schiffner: “Keimbildung und Kristallwachstum in Ausgangsgläsern handelsüblicher Li2O-Al2O3-SiO2-Glaskeramiken”, Doctoral Thesis, Univ. Erlangen-Nürnberg 1984

    Google Scholar 

  43. U. Schiffner, W. Pannhorst: “Nucleation in a precursor glass for a Li2O-Al2O3-SiO2-glass ceramic”, Part 1. Nucleation kinetics, Glastech. Ber. 60, 211–221 (1987)

    Google Scholar 

  44. U. Schiffner, W. Pannhorst: “Nucleation in a precursor glass for a Li2O-Al2O3-SiO2-glass ceramic”, Part 2. Variation of the nucleating agent concentrations, Glastech. Ber. 60, 239–247 (1987)

    Google Scholar 

  45. G. Tammann: Kristallisieren und Schmelzen (Barth, Leipzig 1903)

    Google Scholar 

  46. G. Tammann: Aggregats zustände (L. Voss Verlag, 2. Aufl., Leipzig 1923)

    Google Scholar 

  47. M. Volmer, A. Weber: “Keimbildung in übersättigten Gebilden”, Z. Phys. Chemie 119, 227 (1926)

    Google Scholar 

  48. R. Becker, W. Döring: “Kinetische Behandlung der Keimbildung in übersättigten Dämpfen”, Ann. Physik 24, 719–752 (1935)

    Article  ADS  MATH  Google Scholar 

  49. D. Turnbull, J.C. Fischer: “Nucleation rate in condensed systems”, J. Chem. Phys. 17, 71 (1949)

    Article  ADS  Google Scholar 

  50. J.B. Zeldovich: “On the theory of new phase formation”, Acta physicochim. URSS 18, 1–22 (1943)

    Google Scholar 

  51. J. Frenkel: Kinetic theory of liquids (Oxford University Press 1946)

    MATH  Google Scholar 

  52. D. Kashchiev: “Solution of the non-steady state problem in nucleation kinetics”, Surf. Sci 14, 209–220 (1969)

    Article  ADS  Google Scholar 

  53. S.D. Stookey: “Catalyzed crystallization of glass in theory and practice”, Glastech. Ber. (1959), Sonderband: V. Internationaler Glaskongreß, Heft V, Bd. 32 k

    Google Scholar 

  54. P.W. McMillan: Glass-ceramics (Academic Press, 2nd ed., London 1979)

    Google Scholar 

  55. W. Sack, H. Scheidler: “Einfluß der Keimbildner TiO2 und ZrO2 auf die sich ausscheidenen Kristallphasen bei der Bildung von Glaskeramik”, Glastech. Ber. 39, 126–130 (1966)

    Google Scholar 

  56. D.R. Stewart: “TiO2 und ZrO2 as nucleants in a lithia aluminosilicate glass-ceramic”, in L.L. Hench, S.W. Freiman, (eds.): Advances in nucleating and crystallization in glasses (Symposium of the Glass Division of the Amer. Ceram. Soc., 1971)

    Google Scholar 

  57. G. Müller: “Zur Wirkungsweise von Gemischen oxidischer Keimbildner in Glaskeramik des Hochquarz-Mischkristalltyps”, Glastech. Ber. 45, 189–194 (1972)

    Google Scholar 

  58. R.D. Maurer: “Crystal nucleation in a glass containing titania”, J. Appl. Phys. 33, 2132 (1962)

    Article  ADS  Google Scholar 

  59. G.H. Beali: B.R. Karstetter, H.L. Rittler: “Crystallisation and chemical strengthening of stuffed β-quartz glass ceramics”, J. Am. Ceram. Soc. 50, 181–190 (1967)

    Article  Google Scholar 

  60. P.E. Doherty, D.W. Lee, R.S. Davis: “Direct observation of the crystallization of Li2O-Al2O3-SiO2-glasses containing TiO2”, J. Amer. Ceram. Soc. 50, 77–80 (1967)

    Article  Google Scholar 

  61. W. Vogel: Struktur und Kristallisation der Gläser (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1965)

    Google Scholar 

  62. V.M. Maier: “Untersuchungen zur Keimbildung und Kristallwachstum in Alumosilikat-Glaskeramiken mittels Elektronenmikroskopie und Röntgenab-sorptionsspektroskopie”, Doctoral Thesis, TH Darmstadt 1987

    Google Scholar 

  63. W.A. Zdaniewski: “Microstructure and kinetics of crystallization of MgO-Al2O3-SiO2-glass-ceramics”, J. Amer. Ceram. Soc. 61, 199–204 (1978)

    Article  Google Scholar 

  64. T.J. Barry, L.A. Lay, R.P. Miller: “Nucleation efficiency in lithia-alumina-silica glasses”, Discuss. Farad. Soc. 50, 214–221 (1970)

    Article  Google Scholar 

  65. M.H. Lewis, J. Metcalf-Johansen, P.S. Bell: “Crystallisation mechanisms in glass ceramics”, J. Amer. Soc. 62, 278–288 (1979)

    Google Scholar 

  66. P.F. James: “Nucleation in glass-forming systems — a review. Nucleation and crystallization in glasses”, Advances in ceramics, Vol. 4 (The Amer. Ceram. Soc. 1982)

    Google Scholar 

  67. H. Scheidler, W. Kiefer: Pers. commun, Schott Glaswerke, 1969

    Google Scholar 

  68. A.H. Dietzel: Emaillierung (Springer Verlag, Berlin 1981)

    Book  Google Scholar 

  69. G.H. Beali, D.A. Duke: “Transparent glass-ceramics”, J. Mater. Sci. 4, 340–352 (1969)

    Article  ADS  Google Scholar 

  70. E.J. Smoke: “Ceramic compositions having negative linear thermal expansion”, J. Amer. Ceram. Soc. 34, 235–239 (1951)

    Article  Google Scholar 

  71. J. Petzoldt: “Metastabile Mischkristalle mit Quarzstruktur im Oxidsystem Li2O-MgO-ZnO-Al2O3-SiO2”, Glastechn. Ber. 40, 385–396 (1967)

    Google Scholar 

  72. C. Günter: “Untersuchungen der kristallchemischen Ursachen für die Umwandlung der Hochquarz- in Keatit-Mischkristalle in Li2O-Al2O3-SiO2-Glaskeramiken”, Ph.D. Thesis, University of Darmstadt (1992)

    Google Scholar 

  73. H. Scheidler, W. Sack: “Die unterschiedliche Wirkung der Keimbildner ZrO2 und TiO2 auf das Kristallisationsverhalten eines Lithium-Aluminium-Silikat (Glaskeramik)-Glases”, Proc. 9th Int. Congr. of Glass, Versailles, Prance, Sept. 27. — Oct. 2., 1971, pp. 1069–1085

    Google Scholar 

  74. P.E. Doherty, D.W. Lee, R.S. Davis: “Direct observation of the crystallization of Li2O-Al2O3-SiO2-glasses containing TiO2”, J. Amer. Ceram. Soc. 50, 77–80 (1967)

    Article  Google Scholar 

  75. V.M. Maier: “Untersuchungen zu Keimbildung und Kristallwachstum in Alumosilikat-Glaskeramiken mittels Elektronenmikroskopie und Röntgen-absorptionsspektroskopie”, Ph. D. Thesis, University of Darmstadt (1987)

    Google Scholar 

  76. W. Sack: “Glas, Glaskeramik und Sinterglaskeramik”, Chemie-Ing. Techn. 37, 1154–1165 (1965)

    Article  Google Scholar 

  77. T.I. Barry, D. Clinton, L.A. Lay, R.A. Mercer, R.P. Miller: “The crystallization of glasses based on eutectic compositions in the system Li2O-Al2O3-SiO2; part 1: Lithium metasilicate — β-spodumene”, J. Mat. Sci. 4, 596–612 (1969)

    Article  ADS  Google Scholar 

  78. T.I. Barry, D. Clinton, L.A. Lay, R.A. Mercer, R.P. Miller: “The crystallization of glasses based on eutectic compositions in the systems Li2O-Al2O3-SiO2; part 2: Lithium metasilicate — β-eucryptite”, J. Mat. Sci. 5, 117–126 (1970)

    Article  ADS  Google Scholar 

  79. T.I. Barry. L.A. Lay, R.P. Miller: “Nucleation efficiency in lithia-alumina-silica glasses”, Discuss. Farad. Soc. 50, 214–221 (1970)

    Article  Google Scholar 

  80. G.H. Beali: “Structure, properties, and application of glass-ceramics”, in Advances in Nucleation and Crystallization in Glasses, Amer. Ceram. Soc. Sp. Pub. 5, 251–261 (1971)

    Google Scholar 

  81. M.L. Wang, R. Stevens, P. Knott: “Microstructure and crystallization behaviour of a transparent glass ceramic doped with Fe2O3”, Glass Techn. 23, 238–243 (1982)

    Google Scholar 

  82. B. Andrianasolo, B. Champagnon, C. Esnouf: “Ultrafine grained glass-ceramics obtained with Cr2O3 additions”, J. Non. Cryst. Sol. 126, 103–110 (1990)

    Article  ADS  Google Scholar 

  83. J.Y. Hsu, R.F. Speyer: “Comparison of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O · Al2O3 · 6SiO2 glasses”, J. Amer. Ceram. Soc. 72, 2334–2341 (1989)

    Article  Google Scholar 

  84. J.Y. Hsu, R.F. Speyer: “Influences of zirconia and silicon nucleating agents on the devitrification of Li2O · Al2O3 · 6SiO2 glasses”, J. Amer. Ceram. Soc. 73, 3585–3593 (1990)

    Article  Google Scholar 

  85. J.Y. Hsu, R.F. Speyer: “Crystallization of Li2O · A12O3 · 6SiO2 glasses containing niobium pentoxide as nucleating dopant”, J. Amer. Ceram. Soc. 74, 395–399 (1991)

    Article  Google Scholar 

  86. W. Pannhorst, W. Wichelhaus: “Untersuchungen zur Umwandlung von h-Quarz-Mischkristallen in Keatit-Mischkristalle in Li2O-Al2O3-SiO2 Glaskeramiken”, Proc. 13th Int. Congr. on Glass, Hamburg, Germany; Glastechn. Ber. 56 K, 572–577 (1983)

    Google Scholar 

  87. Z. Strnad, M. Wada: “Volume and surface crystallization during formation of glass-ceramic materials”, Proc. 15th Int. Congr. on Glass, Leningrad, Soviet Union; Vol. 3b, 106–110 (1989)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, G., Pannhorst, W., Schiffner, U. (1995). The Scientific Basis. In: Bach, H. (eds) Low Thermal Expansion Glass Ceramics. Schott Series on Glass and Glass Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03083-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03083-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03085-1

  • Online ISBN: 978-3-662-03083-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics