Skip to main content

Application and Potential of Molecular Approaches to Mushrooms

  • Chapter
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

The information that will be discussed in this chapter deals mainly with the white button mushroom, Agaricus bisporus, but we will also present some background information on other mushrooms. There are more than 38,000 kinds of mushrooms in the world and these vary considerably in color, size and shape. Only a fraction of these 38,000+ types of mushrooms are grown or harvested for commercial purposes. The most significant of these include the specialty mushrooms and the white button mushroom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JJ, Moore D, Elliott TJ (1992) Persistent meiotic arrest in basidia of Agaricus bisporus. Mycol Res 96: 125–127

    Article  Google Scholar 

  • Binz T, D’Mello N, Horgen PA (1998) A comparison of DNA methylation levels in selected isolates of higher fungi. Mycologia 90:785–790

    Article  CAS  Google Scholar 

  • Birky CW Jr (1994) Relaxed and stringent genomes: why cytoplasmic genes don’t obey Mendel’s laws. J Hered 85:355–365

    Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, Den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed  CAS  Google Scholar 

  • Callac P, Billette C, Imbernon M, Kerrigan RW (1993) Morphological, genetic and interfertility analyses reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonoran Desert of California. Mycologia 85:835–851

    Article  Google Scholar 

  • Callac P, Desmerger C, Kerrigan RW (1997) Conservation of genetic linkage with map expansion in distantly related crosses of Agaricus bisporus. FEMS Microbiol Lett 146:235–240

    Article  PubMed  CAS  Google Scholar 

  • Castle AJ, Horgen PA, Anderson JB (1987) Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus bitorquis. Appl Environ Microbiol 53:816–822

    PubMed  CAS  Google Scholar 

  • Castle AJ, Horgen PA, Anderson JB (1988) Crosses among homokaryons from commercial and wild-collected strains of the mushroom Agaricus brunnescens (= A. bisporus). Appl Environ Microbiol 54:1643–1648

    PubMed  CAS  Google Scholar 

  • Cermakian N, Ikeda TM, Cedergren R, Gray MW (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 24:648–654

    Article  PubMed  CAS  Google Scholar 

  • Challen MP, Elliott TJ (1994) Evaluation of the 5-fluoroindole resistance marker for mushroom transformation. Cultivated Mushroom Res Newslett 2:13–20

    Google Scholar 

  • Chen B, Kubelik AR, Mohr S, Breitenberger CA (1996) Cloning and characterization of the Neurospora crassa cyt-5 gene, a nuclear-coded mitochondrial RNA polymerase with a polyglutamine repeat. J Biol Chem 271:6537–6544

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Li N, Wang N, Lin X, Pan Y, Jong SC (2000) Cloning cold-shock genes from the Volvariella volvacea genomic library. In: Van Griensven (ed) Science and cultivation of edible fungi. Mushroom Science XV, Balkema, Rotterdam, pp 267–270

    Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    Article  PubMed  CAS  Google Scholar 

  • De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotech 16: 839–842

    Article  Google Scholar 

  • De Groot PWJ, Schaap PJ, Sonnenberg ASM, Visser J, Van Griensven LJLD (1996) The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J Mol Biol 257:1008–1018

    Article  PubMed  Google Scholar 

  • De Groot PWJ, Schaap PJ, Van Griensven LJLD, Visser J (1997) Isolation of developmentally regulated genes from the edible mushroom, Agaricus bisporus. Microbiology 143:1993–2001

    Article  PubMed  Google Scholar 

  • De Groot PWJ, Bastern DEJW, Sonnenberg ASM, Van Griensven LJLD, Visser J, Schaap PJ (1998) An endo1,4-beta-xylanase-encoding gene from Agaricus bisporus is regulated by compost-specific factors. J Mol Biol 277:273–284

    Article  PubMed  Google Scholar 

  • De Groot PWJ, Roeven RTP, Van Griensven LJLD, Visser J, Schaap PJ (1999) Different temporal and spatial expression of two hydrophobin-encoding genes of the edible mushroom, Agaricus bisporus. Microbiology 145:1105–1113

    Article  PubMed  Google Scholar 

  • de la Bastide PY, Sonnenberg ASM, Van Griensven LJLD, Anderson JB, Horgen PA (1997) Mitochondrial haplotype influences mycelial growth of Agaricus bisporus heterokaryons. Appl Environ Microbiol 63: 3426–3431

    Google Scholar 

  • Evans HJ (1959) Nuclear behaviour in the cultivated mushroom. Chromosoma 10:115–135

    Article  PubMed  CAS  Google Scholar 

  • Faostat Database (Oct 27, 2000) World Mushroom Production. http://apps.fao.org/page/collections? subset=agriculture. Accessed Nov 1, 2000

    Google Scholar 

  • Fritsche G (1983) Breeding Agaricus bisporus at the mushroom experimental station. Horst. Mushroom J 122:49–53

    Google Scholar 

  • Fritsche G (1991) A personal view of mushroom breeding from 1957–1991. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus, Proc 1st Int Seminar on Mushroom Science, Pudoc, Wageningen, pp 3–20

    Google Scholar 

  • GenBank (June 7, 2000) “Agaricus” keyword search. http:\www.ncbi.hlm.nih.gov/Genbank/. Accessed Nov 16, 2000

    Google Scholar 

  • Heath M, Li A, Horgen PA, Tam PL (1995) Hyphal morphology associated with strain instability in the commercial mushroom, Agaricus bisporus. Mycologia 87: 442–450we

    Article  Google Scholar 

  • Hedtke B, Borner T, Weihe A (1997) Mitochondrial and chloroplast phage-type polymerases in Arabidopsis. Science 277:809–811

    Article  PubMed  CAS  Google Scholar 

  • Hintz WEA, Anderson JB, Horgen PA (1988a) Nuclear migration and mitochondrial inheritance in the mushroom, Agaricus bitorquis. Genetics 119:35–41

    PubMed  CAS  Google Scholar 

  • Hintz WEA, Anderson JB, Horgen PA (1988b) Physical mapping of the mitochondrial genome of the cultivated mushroom Agaricus brunnescens (= A. bisporus). Curr Genet 14:43–49

    Article  CAS  Google Scholar 

  • Honda Y, Irie T, Wanatabe T, Kuwahara M (2000) Molecular breeding of the oyster mushroom using a homologous DNA-mediated transformation system. In: Van Griensven (ed) Science and cultivation of edible fungi. Mushroom science XV. Balkema, Rotterdam, pp 151–156

    Google Scholar 

  • Horgen PA, Anderson JB (1993) Biotechnology and edible mushrooms. In: Finkelstein D, Ball C (eds) Biotechnology and filamentous fungi. Butterworth, Boston, pp 447–462

    Google Scholar 

  • Horgen PA, Carvalho D, Sonnenberg A, Li A, Van Griensven LJLD (1997) Chromosomal abnormalities associated with strain degeneration in the cultivated mushroom, Agaricus bisporus. Fungal Genet Biol 29:229–241

    Google Scholar 

  • Imbernon M, Callac P, Gasqui P, Kerrigan RW, Velcko AJ Jr. (1996) BSN, the primary determinant of basidial spore number and reproductive mode in Agaricus bisporus maps to chromosome I. Mycologia 88:749–761

    Article  CAS  Google Scholar 

  • Jin T, Horgen PA (1993) Further characterization of a large inverted repeat in the mitochondrial genomes of Agaricus bisporus (= Agaricus brunnescens) and related species. Curr Genet 23:228–233

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Horgen PA (1994) Uniparental mitochondrial transmission in the cultivated button mushroom Agaricus bisporus. Appl Environ Microbiol 60:4456–4460

    PubMed  CAS  Google Scholar 

  • Jin T, Sonnenberg ASM, Van Griensven LJLD, Horgen PA (1992) Investigation of mitochondrial transmission in selected matings between homokaryons from commercial and wild-collected isolates of Agaricus bisporus (= Agaricus brunnescens). Appl Environ Microbiol 58:3553–3560

    PubMed  CAS  Google Scholar 

  • Kerrigan RW (1990) Evidence of genetic divergence in two populations of Agaricus bisporus. Mycol Res 94:721–733

    Article  Google Scholar 

  • Kerrigan RW (2000) A brief history of species diversity and marker assisted selection in Agaricus bisporus. In: Van Griensven (ed) Science and cultivation of edible fungi. Mushroom science XV. Balkema, Rotterdam, pp 183–190

    Google Scholar 

  • Kerrigan RW, Royer JC, Baller LM, Kohli Y, Horgen PA, Anderson JB (1993) Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics 133:225–236

    PubMed  CAS  Google Scholar 

  • Kerrigan RW, Carvalho DB, Horgen PA, Anderson JB (1995) Indigenous and introduced populations of Agaricus bisporus, in eastern and western Canada: implications for population biology, resource management, and conservation of genetic diversity. Can J Bot 73:1925–1938

    Article  Google Scholar 

  • Kerrigan RW, Carvalho DB, Horgen PA, Anderson JB (1998) The indigenous coastal California population of the mushroom Agaricus bisporus, a cultivated species, may be at risk of extinction. Mol Ecol 7:35–45

    Article  Google Scholar 

  • Kerstern MASH, Muller Y, Op dem Camp HJM, Vogels GD, Van Griensven LJLD, Visser J, Schaap P (1997) Molecular characterization of the gln A gene encoding glutamine synthetase from the edible mushroom, Agaricus bisporus. Mol Gen Genet 256:174–186

    Google Scholar 

  • Khush RS, Becker E, Wach M (1992) DNA amplification polymorphism of the cultivated mushroom, Agaricus bisporus. Appl Environ Microbiol 58:2971–2977

    PubMed  CAS  Google Scholar 

  • Khush RS, Wach MP, Horgen PA (1995) Molecular strategies for breeding and karyotyping in Agaricus. In: Esser K, Lemke PA (eds) The Mycota, vol III. Genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 321–337

    Google Scholar 

  • Lee HK, Shin CS, Min KB, Choi KS, Kim BG, Yoo YB, Min KH (2000) Molecular systematics of the genus Pleurotus using sequence-specific oligonucleotide probes. In: Van Griensven (ed) Science and cultivation of edible fungi. Mushroom science XV. Balkema, Rotterdam, pp 207–214

    Google Scholar 

  • Li A, Horgen PA (1993) Attempts to develop a transformation system in Agaricus bisporus utilizing particle bombardment and several other novel approaches. Cultivated Mushroom Res Newslett 1:11–16

    CAS  Google Scholar 

  • Li A, Begin M, Kokurewicz K, Bowden C, Horgen PA (1994) Inheritance of strain instability (sectoring) in the commercial mushroom, Agaricus bisporus. Appl Environ Microbiol 60:2384–2388

    PubMed  CAS  Google Scholar 

  • Loftus MG, Moore D, Elliot TJ (1988) DNA polymorphisms in commercial and wild strains of the cultivated mushroom, Agaricus bisporus. Theor Appl Genet 76:712–718

    Article  Google Scholar 

  • Loftus M, Bouchti-King L, Robles C (2000) Use of a SCAR marker for cap color in Agaricus bisporus breeding programs. In: Van Griensven (ed) Science and cultivation of edible fungi. Mushroom science XV. Balkema, Rotterdam, pp 210–205

    Google Scholar 

  • Lugones LG, Bosscher JS, Scholtmeyer K, de Vries OMH, Wessels JGH (1996) An abundant hydrophobin, (ABH1), forms hydrophobic rodlet layers in the Agaricus bisporus fruiting bodies. Microbiology 142:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99

    Article  PubMed  CAS  Google Scholar 

  • Matossian MK (1989) Poisons of the past: molds, epidemics and history. Yale University Press, New Haven, CT

    Google Scholar 

  • May B, Royse DJ (1981) Application of the electrophoretic methodology to the elucidation of genetic life histories of edible mushrooms. Mushroom Sci 11:799–817

    CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17:89–95

    Article  PubMed  CAS  Google Scholar 

  • Miller RE (1971) Evidence of sexuality in the cultivated mushroom Agaricus bisporus. Mycologia 63:630–634

    Article  Google Scholar 

  • Mohan M, Meyer R, Anderson JB, Horgen PA (1984) Plasmid-like DNAs in the commercially important genus, Agaricus. Curr Genet 8:615–619

    Article  CAS  Google Scholar 

  • Molin J (1995) Specialty mushrooms: yesterday, today and tomorrow. Mushroom News, February 1995, p 10

    Google Scholar 

  • Monquet F, Desmerger C, Mamoun M, Ramos-GuedesLafargue M, Olivier JM (1999) A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap color. Fungal Genet Biol 28:34–42

    Article  Google Scholar 

  • Ospina-Giraldo MD, Collopy PD, Romaine CP, Royse DJ (2000) Classification of sequences expressed during the primordial and basidiome stages of the commercial mushroom Agaricus bisporus. Fungal Genet Biol 29:81–94

    Article  PubMed  CAS  Google Scholar 

  • Ramirez L, Larraya LM, Penas MM, Perez G, Eizmendi A, Agos I, Arana D, Aranguren J, Iribarren I, Olaberria N, Palacios E, Ugarte BE, Pisabaaro AG (2000) Molecular techniques for the breeding of Pleurotus ostreatus. In: Van Griensven (ed) Science and cultivation of edible fungi. Mushroom science XV. Balkema, Rotterdam, pp 157–164

    Google Scholar 

  • Raper CA (1985) Strategies for mushroom breeding. In: Moore D (ed) Developmental biology of higher fungi. Br Mycol Soc Symp, no 10, Cambridge Univ Press, Cambridge, pp 513–528

    Google Scholar 

  • Raper CA, Raper JA, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 63:1088–1117

    Article  Google Scholar 

  • Robison MM, Royer JC, Horgen PA (1991) Homology between mitochondrial DNA of Agaricus bisporus and an internal portion of a linear mitochondrial plasmid of Agaricus bitorquis. Curr Genet 19:495–502

    Article  PubMed  CAS  Google Scholar 

  • Robison MM, Chiang B, Horgen PA (2000) A phylogeny of the genus Agaricus based on mitochondrial atp6 sequences. Mvcologia 93:30–37

    Article  Google Scholar 

  • Royer JC, Horgen PA (1991) Towards a transformation system for Agaricus bisporus. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Proc 1st Int Seminar on Mushroom Science, Wageningen, Pudoc, pp 135–139

    Google Scholar 

  • Royer JC, Hintz WEA, Horgen PA (1991) Efficient protoplast formation and regeneration and electrophoretic karyotype analysis of the button mushroom, Agaricus bisporus. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Proc 1st Int Seminar on Mushroom Science, Wageningen, Pudoc, pp 52–56

    Google Scholar 

  • Royer JC, Hintz WEA, Kerrigan RW, Horgen PA (1992) Electrophoretic karyotype analysis of the button mushroom, Agaricus bisporus. Genome 35:694–698

    Article  Google Scholar 

  • Royse DJ (1997) Specialty mushrooms and their cultivation. Hortic Rev 19: 59–97

    Google Scholar 

  • Royse DJ, May B (1982) Genetic relatedness and its application in selective breeding of Agaricus brunnescens. Mycologia 74:569–575

    Article  Google Scholar 

  • Saville BJ, Yoell H, Anderson JB (1996) Genetic exchange and recombination in populations of the rootinfecting fungus Armillaria gallica. Mol Ecol 5:485–497

    Article  PubMed  CAS  Google Scholar 

  • Saville BJ, Kohli Y, Anderson JB (1998) mtDNA recombination in natural populations. Proc Natl Acad Sci USA 95:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Sheir-Neiss G, Lai MH, Morris NR (1978) Identification of a gene for β-tubulin in Aspergillus nidulans. Cell 15:639–649

    Article  PubMed  CAS  Google Scholar 

  • Shumann GL (1991) Plant diseases: their biology and social impact. American Phytopathological Society, St Paul, MN

    Google Scholar 

  • Sonnenberg ASM (2000) Genetics and Breeding of Agaricus bisporus. In: Van Griensven LJLD (ed) Proc 15th Int Congr on the Science and Cultivation of Edible Mushrooms. Balkema, Rotterdam, pp 25–39

    Google Scholar 

  • Sonnenberg ASM, den Hollander K, van de Munckhof APJ, van Griensven LJLD (1991) Chromosome separation and assignment of DNA probes in Agaricus bisporus. In: Van Griensven LJLD (ed) Genetics and breeding of Agaricus. Pudoc, Wageningen, pp 57–61

    Google Scholar 

  • Sonnenberg ASM, De Groot PWJ, Schaap PJ, Baars JJP, Visser J, Van Griensven LJLD (1996) Isolation of expressed sequence tags of Agaricus bisporus and their assignment to chromosomes. Appl Environ Microbiol 62:4542–4547

    PubMed  CAS  Google Scholar 

  • Sonnenberg ASM, Baars JP, Mikosch TSP, Schaap PJ, van Griensven LJLD (1999) Abr1, a transposon-element in the genome of the cultivated mushroom, Agaricus bisporus (Lange) Imbach. Appl Environ Microbiol 65:3347–3353

    PubMed  CAS  Google Scholar 

  • Stockton M, Horgen PA (1993) Analysis of the radial growth in selected pedigrees of Agaricus bisporus. CMR Newslett 1:38–43

    Google Scholar 

  • Stoop JMH, Mooibroek H (1999) Advances in the genetics analysis and biotechnology of the cultivated mushroom, Agaricus bisporus. Appl Microbiol Biotechnol 52:474–483.

    Article  CAS  Google Scholar 

  • Summerbell RC, Castle AJ, Horgen PA, Anderson JB (1989) Inheritance of restriction fragment length polymorphisms in Agaricus brunnescens. Genetics 123: 293–300

    PubMed  CAS  Google Scholar 

  • Thomas JH, Neff NF, Botstein D (1985) Isolation and characterization of mutations in the beta-tubulin gene of Saccharomyces cerevisiae. Genetics 112:715–734

    Google Scholar 

  • Tiranti V, Savoia A, Forti F, D’Apolito MF, Centra M, Rocchi M, Zeviani M (1997) Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet 6:615–625

    Article  PubMed  CAS  Google Scholar 

  • USDA Mushroom Industry Report (Sept, 1999) TAB07: US specialty mushroom production, sales, prices.<url> http://usda.mannlib.cornell.edu/data-sets/specialty/94003/</url>. Accessed Nov 1, 2000

    Google Scholar 

  • Van de Rhee MD, Graøa PMA, Huizing HJ, Mooibroek H (1996a) Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance. Mol Gen Genet 250:252–258

    Article  PubMed  Google Scholar 

  • Van de Rhee MD, Mendes O, Werten MWT, Huizing HJ, Mooibroek H (1996b) Highly efficient homologous integration via tandem exo-beta-1,3-glucanase genes in the common mushroom, Agaricus bisporus. Curr Genet 30:166–173

    Article  PubMed  Google Scholar 

  • Van Griensven LJLD (1988) History and development. In: Van Griensven LJLD (ed) History and development. The cultivation of mushrooms. Interlingua TTI, Sussex

    Google Scholar 

  • Van Griensven LJLD (2000) (ed) Science and cultivation of edible fungi. Mushroom Science XV, A.A. Balkema Publications, Rotterdam. pp 1020

    Google Scholar 

  • Xu JP (1996) Mating and population genetic analysis of the basidiomycete fungus, Agaricus bisporus. PhD Thesis, University of Toronto, Toronto, Ontario, Canada

    Google Scholar 

  • Xu JP, Kerrigan RW, Horgen PA, Anderson JB (1993) Localization of the mating type gene in Agaricus bisporus. Appl Environ Microbiol 59:3044–3049

    PubMed  CAS  Google Scholar 

  • Xu JP, Horgen PA, Anderson JB (1996) Somatic recombination in the cultivated mushroom Agaricus bisporus. Microbiol Rev 100:188–192

    Google Scholar 

  • Xu JP, Kerrigan RW, Callac P, Horgen PA, Anderson JB (1997) Genetic structure of natural populations of Agaricus bisporus, the commercial button mushroom. J Hered 88:482–488

    Article  Google Scholar 

  • Xu JP, Kerrigan RW, Sonnenberg AS, Callac P, Horgen PA, Anderson JB (1998) Mitochondrial DNA variation in natural populations of the mushroom Agaricus bisporus. Mol Ecol 7:19–33

    Article  Google Scholar 

  • Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiol Rev 59:686–698

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horgen, P.A., Castle, A. (2002). Application and Potential of Molecular Approaches to Mushrooms. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03059-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07650-3

  • Online ISBN: 978-3-662-03059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics