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Abstract 

In this paper, we restate previously obtained results on homogeneously-mixed single-group 

models for HIV {human immunodeficiency virus) with distributed waiting times in the 

infectious class, present some simulations that illustrate the effects of a changing mean sexual 

activity in the dynamics of HIV, and formulate a single group model for a heterogeneously 

mixed population with continuously-distributed sexual activity. This model forms the basis for 

our formulation of an N-group model with arbitrary social/sexual mixing. The local stability 

analysis of this N-group model is discussed. A two-group example, under preferred mixing, that 

has multiple endemic equilibria is presented, as well as, an example for an N-group model, 

under proportionate mixing, possessing multiple endemic equilibria. 

1. Introduction 

The social/sexual mixing structure of a population or of a group of interacting 

populations plays a crucial role in the dynamics of disease transmission {see Kaplan et al 

{1989), Jacquez et al {1988,1989), Sattenspiel (1987), Sattenspiel and Simon {1988), May and 

Anderson (1989), Hyman and Stanley {1988,1989), Blythe and Castilla-Chavez {1989), and 

Castillo-Chavez and Blythe {1989)). These heterogeneities combined with the effects of the 

initial conditions and varying epidemiological and behavioral parameters can significantly 

affect the rates of disease spread within populations and among interacting populations. 

An increased qualitative understanding of the role that social dynamics, variable 

infectivity (and other epidemiological parameters), asymptomatic carriers, age structure, socio­

economic structure, race, sexual preference, sexual behaviors (such as frequency of anal sex), 

sharing of needles, and intervention programs (such as the generalized use of AZT) play in the 

dynamics of HIV is necessary for the development, testing, and evaluation of control programs 

to slow down the AIDS epidemic at local and global scales. 

1To whom all correspondence should be addressed. 
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The increased quantitative evaluation of the effects of these factors in the dynamics of 

HIV within and between specific populations is of importance in the generation, through 

transmission models, of mid- and long-term predictions of the number of AIDS cases and the 

number of HIV infectives among these populations. In this paper, we introduce some fairly 

general models that incorporate some of the important features just discussed in a. systematic 

way. The achievement of a qualitative understanding of the dynamics of this type of model 

through a. combination of numerical simulations and mathematical analysis would represent a 

very important step toward their future validation. 

This paper is organized into four sections. Section 2 introduces our basic single group 

model for a. homogeneously mixed population. Our recent analytical results are stated, and the 

results of a few numerical simulations are presented to illustrate the effect of a varying mean 

sexual activity (a. function of the effective sexually-active population size) in the dynamics of 

HIV. Section 3 introduces heterogeneous mixing through a. continuous distribution of sexual 

activity: i.e., we divide our population by their degree (partners per unit time) of sexual 

activity. This approach is sometimes equated with the construction of a multiple group model. 

Although this is a. valid interpretation, for practical purposes it may not be the most useful, as 

epidemiological data (such as AIDS incidence) are usually collected or aggregated by other 

criteria such as race, geographic location, socioeconomic background, drug use, sexual 

preference, etc. Of course, what is needed is a mixed approach where modelers, behaviorists, 

and epidemiologists work together to construct "strategic" models, which attempt to define 

the aggregation scheme (during the initial stages of research) and therefore have a direct input 

into experimental design (such as questionnaire development, or simply the gathering of data). 

An aggregation scheme provides us with a collection of groups, each with its own 

distribution of sexual activity. A standard approach consists of assigning the mean sexual 

activity of its corresponding distribution to all members of such socially-defined groups. It is 

then assumed that group members mix at random within their own group, and a rule for 

intergroup mixing is then postulated {for a discussion on the limitations of this approach, see 

Sattenspiel 1987; Sattenspiel and Simon 1988). Of course, nobody prevents the modeler from 

constructing a more detailed multigroup model incorporating the distribution of sexual activity 

for each group. This last approach increases the level of detail and is important for theoretical 

reasons, as it allows us to determine the effects of some neglected features. However, it also 

has the disadvantage of increasing the number of parameters that will have to be estimated, 

and hence its value is diminished when we attempt to use it for predictive purposes. Since 

models can be used for very different purposes {see Hethcote and Yorke 1984), it is obvious 

that a balance has to be reached between the level of detail that one wishes to incorporate, the 

number of parameters that may be possible to estimate, and the effect of the level of 

aggregation that is considered appropriate for the question under consideration. 



Section 4 states our recent analytical results for multiple group models. A key result 

states that multiple group models can have multiple endemic equilibria even under the 

assumption of proportionate mixing. These results contradict the "generalized" thinking that 

epidemiological models of the SIR (susceptible, infected and removed) type have at most two 

equilibria, an infection-free and an endemic state. Two examples, for which two endemic 

equilibria are possible, are included in Section 5. A detailed technical exposition of these results 

will be published elsewhere (see Huang et al 1989). 

2. Single Population Models 

A sexually active homosexual population is subdivided into three groups: S (susceptible), I 

(HIV infectious), and A (AIDS infectious). We assume that A-individuals are sexually inactive 

and hence do not contribute to disease dynamics. Furthermore, we assume that sexually active 

individuals choose their partners at random. The demographic parameters are given by A, the 

recruitment rate into S; I' gives the sexual activity removal rate; and d specifies the AIDS­

induced mortality rate. In addition, >., which denotes the transmission rate per infectious 

partner, is assumed to be given by the product of two constant parameters: i, the average 

proportion of contacts with an infectious individual necessary for transmission, and ¢, the 

average number of contacts per sexual partner. C(T) denotes the mean number of sexual 

partners that an average individual has per unit time, given that the sexually active 

population is T = S+I. It is reasonable to expect that in general C(T) increases linearly for 

small T and saturates for large T. We further assume that the incidence rate B(t)-the 

number of new cases per unit time-is proportional to C(T), to S, and to the sexually active 

infected fraction: 

I(t) 
B(t) = >.C(T)S(t)T(t)' (1) 

The proportionality constant is given by >. (the transmission coefficient). Finally, we let P(s) 

denote the proportion of individuals infected at time t and that, if alive, are still infectious at 

time t+s. Clearly P(s) is nonnegative, nonincreasing, and P(O) =1. We assume that 

00 
f P(s)ds<oo, 
0 

and observe that -P'(s) denotes the removal rate from group I into group A, s time units after 

infection. The distributed-delay model for the sexual spread of HIV /AIDS is therefore given by 

the following system of integra-differential equations: 

dS(t) 
(It" = A- B(t) - I'S(t) , (2) 



' t 

I(t) = I0(t) + J B(x) e-p(t-x)P(t-x)dx, 

0 

A(t) = A0(t) + A1e-dt +! {[ B(x) [-P'(•-x)e-d(t-•)}Ix }d•, 

(3) 

(4) 

where the functions (with compact support) I0(t), A0(t), and the constant Al' are introduced 

to take into account initial conditions. 

This model generalizes the models developed by Anderson et a.l (1986), Anderson and 

May (1987), and Blythe and Anderson (1988a). In Blythe and Anderson (1988a) a. submodel 

was studied numerically for various survivorship functions, and the local asymptotic stability 

analysis was completed for a specific family of survivorship functions. We (Castillo-Chavez et 

al 1989a, b, c) have shown that this model has at most two attractors, which correspond to 

the infection-free state and the endemic state. In addition, we have completed a global stability 

analysis of the infection-free attractor for arbitrary survivorship functions. We have only been 

able to study the asymptotic local stability of the endemic attractor. We present here an 

outline of our results. 

When P(s) = e-as, the disease-free state (~,o) is a globally asymptotically stable 

equilibrium if and only if the reproductive number 

(5) 

If R > 1, there is a unique endemic state, which is a global attractor for all positive solutions. 

When P(s) is arbitrary, the infection-free state is a global attractor whenever the 

reproductive number 
00 

R = ,\C(~) J e-psP(s)ds $ 1; (6) 
0 

if R > 1, then the limiting system 

d~~t) =A- B(t)- pS(t) , (7) 

t 

I(t) = J B(x) e-p(t-x)P(t-x)dx , (8) 
-oo 

has a unique endemic state. This endemic state is locally asymptotically stable, provided that 

dM(T) C(T) 
dT $ 0, where M(T) = -rr-· 

The meaning of local asymptotic stability for this type of model can be found in Thieme and 

Castillo-Cha.vez (1989a). 

In order to see the effects of C(T) on the dynamics of model (2)-(4), we simulate a special 

case, letting P(s) denote a generalized gamma. distribution. With this selection, our model 

reduces to the following system of ordinary differential equations: 

-I 



, d~~t) =A- B(t)- pS(t), 

dl1 (t) 
dt = B(t)- (a1 + p)I1(t), 

dl2(t) 
dt = a 1I1{t)- (~ + p)I2(t) , 

di3(t) 
dt = ~I2(t)- (a3 + p)I3(t), 

di4(t) 
dt = aaia(t)- a4 I4(t)' 

I4 (t) = A(t) , 

dAT(t) 
dt = aai(t), 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

{15) 

where AT(t) denotes the total number of AIDS cases at time t. The incidence in this case is 

given by the following expression: 

.\ I (t) + ..\ I (t) + .\ I (t) 
B(t) = C(T)S(t) 1 1 2 2 3 3 

T(t) 
(16) 

Since we intend to use approximately the same infectivity coefficients as those reported by 

Longini et al. {1989), we have taken only four compartments. Our simulations will use some of 

the current information available on the AIDS epidemic for the homosexual population living 

in San Francisco. These simulations do not attempt to reproduce the situation in San 

Francisco and are only used as an exploratory tool to increase our understanding of the 

mechanisms behind the AIDS epidemic. We note, for example, that the results presented by 

Hethcote at the 1989 SIAM summer meeting as understood by two of the above authors 

(hereafter referred as Hethcote 1989) show that in order to get a good fit to the San Francisco 

data (not available to the authors of this article), at least seven compartments are needed and 

a two-group population with biased mixing. In addition, Hethcote (1989) indicated that 

changes in behavior also need to be introduced through time-dependent parameters to explain 

the San Francisco data. 

The simulations that follow are roughly based on the data presented by Hethcote (1989), 

the parameters estimated by Longini et al. (1989), and the data reported in the Los Angeles 

Times (December 6, 1988). Our main objective was to determine whether or not the simplest 

model (of the type that we have developed) was capable of fitting the reported data. 

The simulation parameters were chosen as follows: ¢1 = 4>2 = ¢3 = 4> = 3; i1 = 0 .004, 

i2= 0.000, i3= 0.007 i4 = 0.0057; hence .\1 = 0.012, ..\2= 0.000, -'a= 0.021 ..\4 = 0.0171. The 

removal rates (following Longini et al., 1989) selected were a1 = 5.0, ~= 0.23, aa= 0.19, and 



a4= 0.5. We tried several two-parameter functional forms for C(T) such as those described in 

Thieme and Castilla-Chavez (1989a,b) but were not able to get a good fit to the number of 

AIDS cases. To get a ga<Xi fit it seemed necessary to increase the number of degrees of freedom 

required. In order to do this, an "ad hoc" procedure that maintained the required properties 

of C(T) was developed. We let C(T) E ¢C(T) so that C(T) now denotes the number of unsafe 

contacts per unit time (one year). We took T(O) = 60,000 and assumed that T(t) ::=; T(O), we 

further assumed that C(T) (a non decreasing function of T) was given by a step function that 

took on 15 values r1 ::=;r2 ::; ... ::;r15, with C(T) = r1 whenever T::;50,000 and C(60,000) = r15. 

The objective was to choose these 15 (possibly distinct) constants in such a way as to 

minimize the least square error fit to the number of AIDS cases. Initial simulations (which 

took up to 8 hours each in a VAX 750) reduced the viable range of T to the T-interval 

(59,000-60,000). We then repeated the same procedure in this T-interval but now using 40 

"steps" (r1::;r2 ::=; ... ::;r40). The initial data was chosen as S(O) = 59,600, I1(0) = 29, I2(0) = 
180, I3(0) = 161. I4 (0) = 30 gives the reported number of AIDS cases in 1982 in San 

Francisco (see Table 1 ). 

The best fit (continuous line) is illustrated in Figure 1. The mean square error is 2024.62 

and the standard deviation is 44.996. The fit is excellent at the beginning but not as good over 

the last two years. In Figure 2 a plot of the best C(T) (actually ¢C(T)) is provided. We 

observe that great change in the mean number of unsafe contacts is needed around 1984 in 

order to obtain a good fit. The initial point given by C(T) = 900 (not in Figure 2) is not 

indicative of the real situation but a consequence of the fitting procedure. C(T) drops 

immediately to 550 and ends at about 30 unsafe contacts per year. This models predicts 

approximately 9,000 HIV infecteds by the end of 1987 (Figure 3), which is quite in 

disagreement with those reported by Hethcote (1989) of 16,000 to 24,000 HIV infected 

individuals. Despite the good fit to the observed AIDS incidence, we did not get a good fit 

(with the model) to the AIDS prevalence (Figure 4). We observe that despite the tremendous 

flexibility of the model (which has a great number of parameters) the method (i.e., differential 

equations) is very constrictive. We need to fit not only a single curve such as the AIDS 

incidence (which here is done satisfactorily) but many others such as the AIDS prevalence, 

HIV incidence and prevalence, through curves generated by these systems of coupled 

differential equations with the same parameters. This apparent drawback is actually the 

biggest strength of the differential equation method in the process of validation of a model. 

From these simulations we conclude that using Longini et al.'s (1989) data (and hence 

four compartments) is not possible to get a reasonable fit to AIDS incidence data using our 

simple model with homogeneous mixing and a saturating formula for C(T). To fit the AIDS 

incidence data we have to use a computer intensive "ad hoc" method that properly constrains 

C(T). Substantial behavioral changes are needed (average number of unsafe contacts per unit 

time) in order to fit these data. We further noticed that model predictions were somewhat 



1rensitive to initial conditions. The difficulties encountered while trying to fit the AIDS 

incidence and prevalence as well as the HIV prevalence data with this simple model provided 

us with several important points: more detailed infectivity studies are needed, the assumption 

of homogeneous mixing is too restrictive-however, a simple form of mixing like preferred 

mixing with two or three groups may be sufficient to produce a better fit (unfortunately data 

on mixing is lacking)-changes in behavior (i.e., time-dependent parameters) may be critical to 

explain the data. These results seem to agree generally with those reported by Hethcote 

{1989). Finally, we note that data sets like the San Francisco data set on homosexual incidence 

and prevalence of HIV is critical to our fine tuning of AIDS models. This is of particular 

importance because of the observed sensitivity of these models to initial conditions. 

2. Formulation of a model with arbitrary mixing 

We consider a sexually active population that is stratified according to a continuous 

variable s that measures the degree of sexual activity (number of sexual partners per unit 

time). Hence 
s + Lls s + Lls s + Lls 

I S(s,t)ds, I I(s,t)ds, and I A(s,t)ds 
s s s 

denote the number of individuals in each of the epidemiological classifications - susceptible, 

infected, and "full-blown" AIDS - respectively, with sexual activity in the activity interval (s, 

s+ils). We again assume that A-individuals are sexually inactive; therefore, if T(s,t) = S(s,t) 

+ I(s,t), then 

00 • 

I T(s,t)ds = T(t) 
0 

denotes the totally sexually active population at timet. Here, C(s,W(T(.,t)) denotes the mean 

number of sexual partners per unit time that an individual with activity level s has, given that 

the sexually active population is T. W(T(.,t)) is a measure of total sexual availability, and 

here is chosen to be a functional of the size of the sexually active population. An example for 

which W depends only on total sexual availability, and hence is independent of s, is given by 

00. 

W(t)= I h(u)T(u,t)du, 
0 

where h(u) is an appropriate weighting function. The mixing function p(s, r) (Blythe and 

Castilla-Chavez, 1989; Castilla-Chavez and Blythe, 1989) is such that 

r + tu 
I p(s,u)du 
r 



denotes the fraction of contacts of a person with activity level s with persons with activity 

levels in {r,r+A.r), and therefore satisfies the following constraints for all s, r, and t: 

p(s,r,t) ~ 0 (17) 

J~ p(s, r,t)dr = 1 {18) 

p(s, r,t)C(s,W(.,t))T(s,t) = p{r, s,t)C{r,W(.,t))T(r,t). {19) 

Conditions {17) and {18) arise because p{s,r,t) can be interpreted as a probability density 

function, while condition {19) expresses a conservation principle, i.e., that the total number of 

partnerships of s-people with r-people must equal the total number of partnerships of r-people 

with s-people. 

To describe a dynamic model that incorporates a general mixing function, we have to 

introduce additional notation. We let A(s) denote the recruitment rate into S{s,t), Jl denotes 

the sexual removal rate, d denotes the disease-induced mortality rate, and J.(s,r) denotes the 

transmission coefficient between susceptible individuals with activity s and infective individuals 

with activity r. Using this notation, we can now derive an expression for the number of new 

cases per unit time-the incidence B(s,t). First, we observe that I(r,t)Ar and T(r,t)Ar give 

·the total number of infective and sexually active individuals, respectively, with activity in the 

activity interval (r,r+A.r). Hence, 
I( r ,t) 
T(r,t) 

denotes the infective fraction that has activity level in the activity interval (r,r+A.r). Since 

p(s,r,t)Ar denotes the proportion of partnerships that a typical individual with activity level s 

has with persons with activity levels in the activity interval (r,r+A.r) at time t, then 

C(s,W{T(.,t))p(s,r,t)Ar denotes the average number of partnerships per person of activity s 

with persons of activities in the interval (r,r+A.r). Furthermore 

I(r,t) 
C(s,W(T(.,t)))p(s,r,t)Ar T(r,t) 

denotes the fraction of the average number of partnerships per person of activity level s that 

are with persons with activities in the interval {r,r+Ar). The expression for the incidence 

therefore is given by 

00 _ J I{r,t) B{s,t) - S{s,t)C(s,W(T(.,t)) {J{s,r) p(s,r,t) T(r,t)dr. 

0 

{20) 

To model a population that mixes in proportion to their numbers and their sexual 

activity (i.e., proportionate mixing) we use the mixing function 

--,.-C~( r...:...., W_(.:....T~( ·..:-•t~)):.....)T..:..( r~,t...._) -, p(s,r,t) = ""' 
J C(u,W(T(.,t)))T(u,t)du 

0 

(21) 



with its associated incidence rate 

00 

B(s,t) = S(s,t)C(s,W(T(.,t)) J P(s,r}C(r,W(T(r,t))I(r,t}dr. 

0 

(22} 

More general mixing functions can be found in Blythe and Ca.stillo-Chavez (1989} and Castilla­

Chavez and Blythe (1989). 

The simplest epidemiological model that incorporates these features is given by the 

following set of equations: 

dS(s t) 
dt' = A(s)- B(s,t)- JlS(s,t) , (23) 

dl(s t) --c:If- = B(s,t)- (a(s) + J.l)l(s,t) , (24) 

dA(s,t) 
dt = a(s)I(s,t)- d(s)A(s,t) , (25) 

This model, as presented, is not an adequate model for the study of HIV dynamics, since 

it assumes a removal rate from the infective class a(s) independent of time since infection. This 

is not a crucial limitation, however, as the model can be modified easily to take into account 

not only time since infection but also different degrees of infectivity in the various infectious 

categories. The simplest way of doing so is by further subdividing the infectious class into 

several compartments with different removal rates (see Section 2); variable infectivity also is 

easily incorporated into the B(s,t) term. A full model using partial differential equations can 

also be easily developed via the approach of Blythe and Anderson (1988b ), Hyman and Stanley 

(1988, 1989), and Thieme and Castillo-Chavez (1989a,b ). For extensions of these approaches 

to age-structured populations see Busenberg and Castillo-Chavez (1989a, b). 

3. Multiple group models 

In this section we describe an N-group model that is contained conceptually in models 

(23)-(25). A general type of mixing is discussed-biased or preferred mixing-that includes the 

familiar proportionate mixing. Analytical results for this general model are presented. To 

describe our N-group model, we proceed by introducing some new notation. Our N sexually 

active sub populations are divided into three epidemiological classes: Si, Ii, and Ai for 

i=1,···,N. A. denotes the constant recruitment rate of susceptibles into class S., I' denotes the 
1 1 

sexual activity removal rate, di denotes the disease-induced mortality in class Ai, and ai 

denotes the ith_removal rate of its corresponding infective class. Furthermore, ~ij denotes the 

transmission coefficient between group i and group j individuals. 



To describe the mixing, we let Pij(t) denote the fraction of new partnerships per unit time 

of individuals in group j with individuals in group i. Then the Pij's satisfy the following 

properties at all times: 

Pij~ 0, iJ = 1,· ··,N 

Proportionate mixing is defined by 

iJ = 1,···,N 

whereas preferred or biased mixing is given by 

p~~) = 
1J 

f. + (1-f.) 
{ 

1 1 

(1-fi) 

Ci(W(T 1, ... TN) )Cl-fi)Ti 
----~---------L~~---------, i=j 

C/W(Tl' ... TN))(l-fi)Ti .. 
• ' 1#:J L 

{26) 

{27) 

{28) 

{29) 

(30) 

In the last definition fi denotes the fraction of group i's new partnerships per unit time 

that are reserved for within the ith subpopulation, while the remaining fraction, 1-fi' of group 

i's new partnerships per unit time is assumed to be distributed according to proportional 

mixing. Note that equation (23) includes proportional mixing (set fi = 0 fori= l, ... ,N). 

Following our discussion leading to ~uation (20), we conclude that the ith_incidence rate 

is given by 

( ) N 1/t) 
Bi{t) = Si(t)Ci W(T1' ... TN) i~1 .\ijPij(t) T/t)' (31) 

where Tk(t) = Sk(t) + Ik(t), k = l, ... ,N. 

We set q. = 1
11/ J.l to rescale the dynamics of transmission and arrive at model (32)-(34): 

1 0'· 
1 

(32) 

(33) 

(34) 



'This model assumes constant removal rates from the infective classes into the AIDS classes. As 

noted before, this assumption ca.n be relaxed easily by further subdivision of the infective 

classes, as illustrated in Section 2. 

Models (32)-(34) have been analyzed in the ca.se of preferred mixing when 

N 
W(Tp···TN) = t = LTk. 

k=l 

To describe our results for this model, we define the probability te{i,T*) by 

*A; N 
. * Ci(T )7I * "A" te(l,T ) = N , where T = L..t P:• 

}: C~:(T*)A" '==1 
k=l J-1 

i = 1,2,···,N, 

[ C -(T*)>,. ·te(i,T*)J 
and introduce the matrix Q given by 1 q . .f1 , and the function H(JJ) = Q-JJE, 

' NxN 
where E is the NxN identity matrix. 

The following local stability result for the general N-group model was first reported in 

Castillo-Chavez et al. (1989c) for the case of proportionate mixing. It has since been extended 

to the case of preferred mixing (see Huang et al 1989). To describe it, we let M( H(JJ)) = 

sup{ Re p:det(pE-H(JJ)) = 0 }· 

There is a unique 1-'o such that 

Furthermore the infection-free state S = (~t, .. ·,tn ,0,···,0) is locally asymptotically stable 

provided that M( H{J-1)) < 0. 

Bifurcation results for the N-group model were also reported in Castillo-Chavez et al 

(1989c) for the random mixing case. We have shown that the same assumptions as in Castilla­

Chavez et al {1989c)- namely Ci(T) = ci (a constant) for i=1,2,···,N, Q is irreducible, and JJo 

is such that M( H(JJo)) = 0 - also hold for the preferred mixing case. To state our results, we 

introduce the expression 

where I = {I1, .. ·,In) and T = {fl,···,rn) are positive eigenvectors of H(JJo) and HT(JJo) 

corresponding to the zero eigenvalue (T denotes the transpose in this case). The existence of 

these positive eigenvectors (i.e., all entries are positive) is guaranteed by M-matrix theory. We 

{Huang et al 1989) have established the following bifurcation results: 

If h(JJo) f. 0, then 1-'o is a bifurcation point. More specifically, if h(JJo) > 0 (h{JJo)<O) 



&then there is an t' > 0 and unique continuously differentiable functions S and I mapping (p0-

f,Jlo]-+ R:((p0,p0+£)-+ R:) such that (s{p0),1{p0)) = (~1,···,~",0,···,0), and (s(p),l(p)) is 

a positive endemic equilibrium of {31,p). This endemic equilibrium is locally asymptotically 

stable for each Jl in {p0-£,p0 ) (unstable for each Jl in {p0,p0+£)). 

For each Jl in {O,p0), the system {31,p) bas a positive endemic equilibrium; and if b(p0) < 
0, there is an f > 0, such that the system {24,p) bas at least two positive equilibria for each Jl 

in (p0,p0+£). 

Our analytical results for models of the sexual spread of HIV /AIDS show that our single 

group models are robust, in the sense that only "simple" dynamics are possible. In addition 

(see Castillo-Chavez et al., 1989a,b), we have shown that the reproductive number is not 

significantly affected by the shape of the survivorship function, assuming that the survivorship 

function is biologically reasonable {but see Thieme and Castillo-Chavez 1989a,b). We have also 

illustrated the effects of a changing mean sexual activity, where the changes are due 

exclusively to a shrinking sexually active population. These changes allow us to obtain any 

kind of polynomial growth in the number of AIDS cases after the initial exponential growth 

phase exhibited by all models of this type. Furthermore, we see that the generalized thinking 

that S-I-R epidemic models do not have multiple equilibria is inaccurate, and hence the 

possibility for complex dynamics is certainly real. Our analytical results have been obtained 

under the assumption of preferred mixing; however, the model formulation is quite arbitrary, 

as the Pij(t)'s can be defined in a variety of ways as long as they satisfy the mixing constraints 

(25)-{27). Finally, we note that the above models have assumed that all infectious individuals 

are equally infectious. We have modified our single group model to include variable infectivity, 

and it appears that variable infectiousness does play a significant role in the qualitative 

dynamics of our single group model (see Thieme et al., 1989a,b). In addition, it can 

significantly affect quantitative values such as the initial rate of spread and the saturation level 

of cases. The numerical simulations found in Hyman and Stanley {1988, 1989) show that the 

transient dynamics for a similar model can be very sensitive to changes in the infectivity. 

4. N-group model with endemic equilibria: two examples 

The examples in this section illustrate the existence of multiple endemic equilibria for the 

N-group epidemic model (equations 32-34) of Section 3. These examples point to the 

mechanism responsible for the generation of at least two endemic equilibria: asymmetry. 

Asymmetry arises through the nature of social/sexual interactions, that is, the mixing or 

asymmetric epidemiological parameters (here built in the transmission coefficient). 

In order to introduce our examples we need some definitions. Let 

6i = fi ~iici , 



• 

and 

e •• = r.r.>. .. = c.c.1-f.)(1-f.)). ..• 
1J 1J1J 1J 1 JIJ 

With these definitions, equations (32}-(33) become 

ds. (0.1. 1 N ) 
-d 1 = A. - p,S. - s. T1 1 + -( -) S t .. I. 

t 1 1 1 i M T j=1 1J J 
(35) 

di. (o.r. 1 N ) 
d; = si Til + M(T) j~1li}j - p(si+l)Ii (36) 

or equivalently in the form 

~~ = X(p,S,I) , (37) 

~! = Y(p,S,I) , (38) 

where 

p. > 0, 81• ~ 0, e .• > 0, A. > 0, u. > 0 and L = [t .. l 
1J - 1 1 IJjNxN 

is an irreducible matrix. 

For a two-group example (N=2), let p.0=1, ui=l, Ai=4, Bi=l, ri=1, i=1,2 and 

L = [ 1-£ 0.1£ ] 

1 0.9 

where £ > 0. Lengthy computations then show that h(p.0 ) < 0 (see Section 3) if £ is 

sufficiently small. 

For our second example, we let Ai=Ci=1, ui=u>O, fi=O, i=1,-··,N, and >.21 =>.31 = 

···=>.N1 >.>0 be fixed. We further let >.11 >0, >.ij=O, j:;f1, i=1,-··,N, and p.0 =N(:'t1). 

For fixed u, >. > 0, we can then choose >.11 > 0 small enough so that 

h(p.0 ) = >.11(1-6) 0 , 

where 
u (N-1)u>. 

6 = N(u+1) + N(u+1)>.11 • 

For complete details see Huang et al. (1989). 



6. Conclusion 

In this article we have restated some of our analytical results on single- and multiple­

group models. Of theoretical importance is the fact that multiple group models can possess 

multiple endemic equilibria. Two examples that illustrate this situation were presented in 

Section 5. We note, from these two examples, that what appears to be the critical factor in 

generating multiple endemic equilibria is asymmetry, either in mixing or in infectivity. There 

are, of course, several situations in which asymmetries of these types exist in the study of 

sexually transmitted diseases. Examples include the different infectivities for males and females 

found in gonorrhea research (see Hethcote and Yorke 1984), the (probable) asymmetric mixing 

between prostitutes and customers, etc. 

The theoretical results generated by our models show that these asymmetries have an 

effect on the qualitative dynamics, and hence the importance of these asymetries depend on 

the parameters. Our results suggest strongly that experiments should be conducted to measure 

asymmetries that will answer important questions such as: How asymmetric is the mixing 

when one member of a pair is monogamous and the other is not? Is the probability of 

transmission from female to male and vice versa significantly different? How different is the 

probability of transmission between anal and vaginal intercourse? How asymmetric is the use 

of prophylactics such as condoms among sexual partners? etc. 

We further note that without more detailed data on infectivity and mixing, and without 

further detailed epidemiological and behavioral studies (accessible to a variety of researchers) 

such as the San Francisco cohort studies, there is no hope that we can identify the relative 

effects of these key parameters and therefore increase our understanding of the AIDS epidemic. 

Predictions that go beyond those currently generated by statistical techniques will be difficult 

in the absence of these data. 
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Table I. 

Observation Time fitted observed 
(6 months) 

1 0 30.590 30.628 
2 1 33.095 33.592 
3 2 49.861 56.316 
4 3 102.916 128.440 
5 4 190.765 157.092 
6 5 285.253 229.216 
7 6 371.723 329.004 
8 7 446.573 397.176 
9 8 508.933 434.720 

10 9 560.226 545.376 
1 1 10 602.764 685.672 
12 1 1 638.707 686.660 
13 12 668.015 680.732 

Fitted and observed data from the simulation that generated the best 
fit (standard deviation 44.996). 
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