Skip to main content

Tetanus and Botulinum Neurotoxins

  • Chapter
Selective Neurotoxicity

Part of the book series: Springer Study Edition ((SSE,volume 102))

Abstract

Tetanus toxin and the botulinum toxins A, B, Cl, D, E, F, and G are proteins produced by bacilli of the genus Clostridium. The eight toxins have a similar structure, they are translocated into neurons by adsorptive endocytosis, and they act predominantly on nerve cells. They have so many features in common (van Heyningen 1982; Mellanby 1984; Simpson 1990) that a comparative discussion not only appears to be justified but may contribute to a better understanding of the whole group of “clostridial neurotoxins” (CNTs).

Work supported by the Deutsche Forschungsgemeinschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agui T, Syuto B, Oguma K, Iida, Kubo S (1983) The structural relation between the antigenic determinants to monoclonal antibodies and binding sites to rat brain synaptosomes and GT1b ganglioside in Clostridium botulinum type C neurotoxin. J Biochem (Tokyo) 97:213–218

    Google Scholar 

  • Aguilera J, Yavin E (1990) In vivo translocation and down-regulation of protein kinase C following intraventricular administration of tetanus toxin. J Neurochem 54:339–342

    PubMed  CAS  Google Scholar 

  • Aguilera J, Lopez LA, Yavin E (1990) Tetanus toxin-induced protein kinase C activation and elevated serotonin levels in the perinatal rat brain. FEBS Lett 263:61–65

    PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G, Bizzini B, Goretzski K, Müller H, Volckers C, Habermann E (1983) Monoclonal antibodies against tetanus toxin and toxoid. Med Microbiol Immunol (Berl) 172:123–135

    CAS  Google Scholar 

  • Ahnert-Hilger G, Bader MF, Bhakdi S, Gratzl M (1989a) Introduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC12) by permeabilization with streptolysin O - inhibitory effect of tetanus toxin on catecholamine secretion. J Neurochem 52:1751–1758

    PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G, Stecher B, Gratzl M (1989b) Effects of tetanus toxin and botulinum A toxin on exocytosis from permeabilized adrenal chromaffin cells. Biol Chem Hoppe Seyler 370:613

    Google Scholar 

  • Ahnert-Hilger G, Weller U, Dauzenroth ME, Habermann E, Gratzl M (1989c) The tetanus toxin light chain inhibits exocytosis. FEBS Lett 242:245–248

    PubMed  CAS  Google Scholar 

  • Aktories K (1990) Clostridial ADP-ribosyltransferases - modification of low- molecular-weight GTP-binding proteins and of actin by clostridial toxins. Med Microbiol Immunol (Berl) 179:123–136

    CAS  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1388

    PubMed  CAS  Google Scholar 

  • Albus U, Habermann E (1983) Tetanus toxin inhibits the evoked outflow of an inhibitory (GABA) and an excitatory (D-aspartate) amino acid from particulate brain cortex. Toxicon 21:97–110

    PubMed  CAS  Google Scholar 

  • Aleksevich YI, Tumanov VP, Yavorski OG, Gordii PD, Kovalyshin VI (1983) Effect of tetanus toxin on the myocardium. Bull Exp Biol Med (Russ) 95:130–133

    Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948) The action of tetanus toxin on the rabbit’s iris. J Physiol (Lond) 107:45–53

    CAS  Google Scholar 

  • An der Lan B, Habig WH, Hardegree MC, Chrambach A (1980) Heterogenity of 125I-labeled tetanus toxin in isoelectric focussing on polyacrylamide gel and polyacrylamide gel electrophoresis. Arch Biochem Biophys 200:206–215

    Google Scholar 

  • Andersen-Beckh B, Binz T, Kurazono H, Mayer T, Eisel U, Niemann H (1989) Expression of tetanus toxin subfragments in vitro and characterization of epitopes. Infect Immun 57:3498–3505

    PubMed  CAS  Google Scholar 

  • Angaut-Petit D, Molgo J, Thesleff S (1988) Presynaptic study of frog neuromuscular junctions in vitro poisoned with botulinum A toxin. J Physiol (Lond) 406:59P

    Google Scholar 

  • Angaut-Petit D, Molgo J, Cornelia JX, Faille L, Tabti N (1990) Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin - morphological and electrophysiological features. Neuroscience 37:799–909

    PubMed  CAS  Google Scholar 

  • Anonymous (1982) Sixth international conference on tetanus, 3–5 Dec 1981, Lyon. Fondation Marcel Merieux, Lyon

    Google Scholar 

  • Antony MT, Sayers H, Stolkin C, Tonge DA (1981) Prolonged paralysis, caused by the local injection of botulinum toxin, fails to cause motor nerve terminal sprouting in skeletal muscle of the frog. Q J Exp Physiol 66:525–532

    PubMed  CAS  Google Scholar 

  • Ashton AC, Dolly JO (1988) Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J Neurochem 50:1808–1816

    PubMed  CAS  Google Scholar 

  • Ashton AC, Edwards K, Dolly J (1988a) Action of botulinum neurotoxin A on protein phosphorylation in relation to blockade of transmitter release. Biochem Soc Trans 16 A:885–886

    Google Scholar 

  • Ashton AC, Edwards K, Dolly JO (1988b) Lack of detectable ADP-ribosylation in synaptosomes associated with inhibition of transmitter release by botulinum neurotoxins A and B. Biochem Soc Trans 16:883–884

    CAS  Google Scholar 

  • Bagetta G, Corasaniti MT, Nistico G, Bowery NG (1990a) Behavioral and neuropathological effects produced by tetanus toxin injected into the hippocampus of rats. Neuropharmacology 29:765–770

    PubMed  CAS  Google Scholar 

  • Bagetta G, Knott C, Nistico G, Bowery NG (1990b) Tetanus toxin produces neuronal loss and a reduction in GABAa but not GABAb binding sites in rat hippocampus. Neurosci Lett 109:7–12

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Clark AW, DasGupta BR, Sathyamoorthy V (1987) Role of the heavy and light chains of botulinum neurotoxin in neuromuscular paralysis. J Biol Chem 262:2660–2663

    PubMed  CAS  Google Scholar 

  • Bartels F, Marxen P, Bigalke H (1990) Translocation of tetanus toxin into intact and permeabilized chromaffin cells: a comparison. Biol Chem Hoppe Seyler 371:1035–1036

    Google Scholar 

  • Beaude P, Delacour A, Bizzini B, Domuado D, Remy MH (1990) Retrograde axonal transport of an exogenous enzyme covalently linked to BIIb fragment of tetanus toxin. Biochem J 271:87–91

    PubMed  CAS  Google Scholar 

  • Bergey GK, MacDonald RL, Habig WH, Hardegree MC, Nelson PG (1983) Tetanus toxin: convulsant action on mouse spinal cord neurons in culture. J Neurosci 3:2310–2324

    PubMed  CAS  Google Scholar 

  • Bergey GK, Bigalke H, Nelson PG (1987) Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action for tetanus toxin. J Neurophysiol 57:121–131

    PubMed  CAS  Google Scholar 

  • Bergey GK, Habig WH, Bennett JI, Lin CS (1989) Proteolytic cleavage of tetanus toxin increases activity. J Neurochem 53:155–161

    PubMed  CAS  Google Scholar 

  • Berliner P, Unsicker K (1985) Tetanus toxin labeling as a novel rapid and highly specific tool in human neuroblastoma differential diagnosis. Cancer 56:419–423

    PubMed  CAS  Google Scholar 

  • Betley MJ, Somers E, DasGupta BR (1989) Characterization of botulinum type A neurotoxin gene - delineation of the N-terminal encoding region. Biochem Biophys Res Commun 162:1388–1395

    PubMed  CAS  Google Scholar 

  • Bevan S, Wendon LMB (1984) A study of the action of tetanus toxin at rat soleus neuromuscular junctions. J Physiol (Lond) 348:1–17

    CAS  Google Scholar 

  • Bhattacharyya SD, Sugiyama H, Rust P, Lacey D (1988) Evidence that subunits of type A botulinum toxin need not be linked by disulfide. Toxicon 26:817–825

    PubMed  CAS  Google Scholar 

  • Bigalke H, Habermann E (1980) Blockade by tetanus and botulinum A toxin of postganglionic cholinergic nerve endings in the myenteric plexus. Naunyn- Schmiedebergs Arch Pharmacol 312:255–263

    PubMed  CAS  Google Scholar 

  • Bigalke H, Dimpfel W, Habermann E (1978) Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn-Schmiedebergs Arch Pharmacol 303:133–138

    PubMed  CAS  Google Scholar 

  • Bigalke H, Ahnert-Hilger G, Habermann E (1981a) Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naunyn-Schmiedebergs Arch Pharmacol 316:143–148

    PubMed  CAS  Google Scholar 

  • Bigalke H, Heller I, Bizzini B, Habermann E (1981b) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord. Naunyn-Schmiedebergs Arch Pharmacol 316:244–251

    PubMed  CAS  Google Scholar 

  • Bigalke H, Dreyer F, Bergey G (1985) Botulinum A neurotoxin inhibits non- cholinergic synaptic transmission in mouse spinal cord neurones in culture. Brain Res 360:318–324

    PubMed  CAS  Google Scholar 

  • Bigalke H, Müller H, Dreyer F (1986) Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24:1065–1074

    PubMed  CAS  Google Scholar 

  • Bigalke H, Marxen P, Ahnert-Hilger G (1989) Restoration of noradrenaline release by increasing concentrations of carbachol in botulinum A neurotoxin blocked chromaffin cells in culture. Biol Chem Hoppe Seyler 370:993–994

    Google Scholar 

  • Binah O (1987) Tetanus in the mammalian heart - studies in the shrew myocardium. J Mol Cell Cardiol 19:1247–1252

    PubMed  CAS  Google Scholar 

  • Binz T, Kurazono H, Popoff MR, Eklund MW, Sakaguchi G, Kozaki S, Krieglstein K, Henschen A, Gill DM, Niemann H (1990a) Nucleotide sequence of the gene encoding Clostridium botulinum neurotoxin type D. Nucleic Acids Res 18:5556–5556

    PubMed  CAS  Google Scholar 

  • Binz T, Kurazono H, Wille M, Frevert J, Wernars K, Niemann H (1990b) The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J Biol Chem 265:9153–9158

    PubMed  CAS  Google Scholar 

  • Bishop GH, Bofenbrenner JJ (1936) The site of action of botulinum toxin. Am J Physiol 117:393–404

    Google Scholar 

  • Bittner MA, Holz RW (1988) Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells. J Neurochem 51:451–456

    PubMed  CAS  Google Scholar 

  • Bittner MA, DasGupta BR, Holz RW (1989a) Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. J Biol Chem 264:10354–10360

    PubMed  CAS  Google Scholar 

  • Bittner MA, Habig WH, Holz RW (1989b) Isolated light chain of tetanus toxin inhibits exocytosis: studies in digitonin-permeabilized cells. J Neurochem 53:966–968

    PubMed  CAS  Google Scholar 

  • Bizzini B (1984) Investigation of the mode of action of tetanus toxin with the aid of hybrid molecules consisting in part of tetanus toxin-derived fragments. In: Alouf JE et al. (eds.) Bacterial protein toxins. FEMS Symposium, Academic Press, London, p 427

    Google Scholar 

  • Bizzini B, Turpin A, Raynaud M (1973) Immunochemistry of tetanus toxin. The nitration of tyrosyl residues in tetanus toxin. Eur J Biochem 39:171–181

    PubMed  CAS  Google Scholar 

  • Bizzini B, Grob P, Glicksman MA, Akert K (1980) Use of the BIIb tetanus toxin derived fragment as a specific neuropharmacological transport agent. Brain Res 193:221–227

    PubMed  CAS  Google Scholar 

  • Bizzini B, Grob P, Akert K (1981) Papain-derived fragment IIC of tetanus toxin - its binding to isolated synaptic membranes and retrograde axonal transport. Brain Res 210:291–299

    PubMed  CAS  Google Scholar 

  • Black JD, Dolly JO (1986a) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 103:521–534

    PubMed  CAS  Google Scholar 

  • Black JD, Dolly JO (1986b) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103:535–544

    PubMed  CAS  Google Scholar 

  • Black JD, Dolly JO (1987) Selective location of acceptors for botulinum neurotoxin A in the central and peripheral nervous system. Neuroscience 23:767–780

    PubMed  CAS  Google Scholar 

  • Blasi E, Pitzurra F, Fuad AMB, Marconi P, Bistoni F (1990) Gamma interferon induced specific binding of tetanus toxin on the GG2EE macrophage cell line. Scand J Immunol 32:289–292

    PubMed  CAS  Google Scholar 

  • Blaustein RO, Germann WJ, Finkelstein A, DasGupta BR (1987) The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett 226:115–120

    PubMed  CAS  Google Scholar 

  • Blaustein RO, Hoch DH, DasGupta BR (1988) Channels formed by botulinum type E neurotoxin in planar lipid bilayers. FASEB J 2:1750

    Google Scholar 

  • Boquet P, Dufiot E (1982) Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci USA 79:7614–7618

    PubMed  CAS  Google Scholar 

  • Boquet P, Dufiot E, Hauttecoeur B (1984) Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur J Biochem 144:339–344

    PubMed  CAS  Google Scholar 

  • Borochov-Neori H, Delbruck T, Yavin E, Montai M (1984a) Tetanus toxin channels in ganglioside containing lipid bilayers are voltage dependent. Biophys J 45:59A

    Google Scholar 

  • Borochov-Neori H, Yavin E, Montai M (1984b) Tetanus toxin forms channels in planner lipid bilayers containing gangliosides. Biophys J 45:83–85

    PubMed  CAS  Google Scholar 

  • Boroff DA, DelCastillo J, Evoy WH, Steinhardt RA (1974) Observations on the actions of type A botulinum toxin on frog neuromuscular junctions. J Physiol (Lond) 240:227–253

    CAS  Google Scholar 

  • Bray JJ, Harris AJ (1975) Dissociation between nerve-muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin. J Physiol (Lond) 253:53–77

    CAS  Google Scholar 

  • Brooks VB (1954) The action of botulinum toxin on motor nerve terminals. J Physiol (Lond) 123:501–515

    CAS  Google Scholar 

  • Brooks VB (1956) An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J Physiol (Lond) 134:264–277

    CAS  Google Scholar 

  • Bruschettini A (1892) Sulla diffusione del veleno del tetano neH’organismo. Riforma Med 8:256–259, 270–273

    Google Scholar 

  • Burgen ASV, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol (Lond) 109:10–24

    CAS  Google Scholar 

  • Büttner-Ennever JA, Grob P, Akert K, Bizzini B (1981) Transsynaptic retrograde labeling in the oculomotor system of the monkey with [l25I]tetanus toxin BIIb fragment. Neurosci Lett 26:233–238

    PubMed  Google Scholar 

  • Cabiaux V, Lorge P, Vandenbranden M, Famalgne P, Ruysschaert JM (1985) Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem Biophys Res Commun 128:840–949

    PubMed  CAS  Google Scholar 

  • Calabresi P, Benedetti M, Mercuri NB, Bernardi G (1989) Selective depression of synaptic transmission by tetanus toxin. A comparative study in hippocampal and neostriatal slices. Neuroscience 30:663–670

    PubMed  CAS  Google Scholar 

  • Chiu W, Rankert D, Cumming MA, Robinson JP (1982) Characterization of crystalline filtrate tetanus toxin. J Ultrastruct Res 79:285–293

    PubMed  CAS  Google Scholar 

  • Chou SM, Payne WN (1982) Vacuolation and chromatolysis of lower motoneurons in tetanus. A case report and review of the literature. Cleve Clin Q 49:255–264

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Thompson PA, Davies J, Mellanby J (1981) In vitro effect of tetanus toxin on GABA release from rat hippocampal slices. J Neurochem 37:1039–1041

    PubMed  CAS  Google Scholar 

  • Colmeus C, Gomez S, Molgo J, Thesleff S (1982) Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuro-muscular junctions. Proc R Soc [B] 215:63–74

    CAS  Google Scholar 

  • Considine RV, Bielicki JK, Simpson LL, Sherwin JR (1990) Tetanus toxin attenuates the ability of phorbol myristate acetate to mobilize cytosolic protein kinase C in NG108 cells. Toxicon 28:13–20

    PubMed  CAS  Google Scholar 

  • Craven CJ, Dawson DJ (1973) The chain composition of tetanus toxin. Biochem Biophys Acta 317:277–285

    PubMed  CAS  Google Scholar 

  • Critchley DR, Nelson PG, Habig WH, Fishman PH (1985) Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J Cell Biol 100:1499–1507

    PubMed  CAS  Google Scholar 

  • Critchley DR, Habig WH, Fishman PH (1986) Reevaluation of the role of gangliosides as receptors for tetanus toxin. J Neurochem 47:213–222

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Lundh H, Thesleff S (1976) Effects of botulinum toxin on neuromuscular transmission in the rat. J Physiol (Lond) 260:177–203

    CAS  Google Scholar 

  • DasGupta BR (1984) Amino acid composition of Clostridium botulinum type B neurotoxin. Toxicon 22:312

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Datta A (1988) Botulinum neurotoxin type B (strain 657) - partial sequence and similarity with tetanus toxin. Biochimie 70:811–817

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Deklava ML (1990) Botulinum neurotoxin type A: sequence of aminoacids at the N-terminus and around the nicking side. Biochimie 72:661–664

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Foley J (1989) C. botulinum neurotoxin type A and type E - isolated light chain breaks down into 2 fragments - comparison of their amino acid sequences with tetanus neurotoxin. Biochimie 71:1193–1200

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Rasmussen S (1983) Purification and amino acid composition of type E botulinum neurotoxin. Toxicon 21:535–545

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Sathyamoorthy V (1984) Purification and amino acid composition of type A botulinum neurotoxin. Toxicon 22:415–424

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Sugiyama H (1980) Role of arginine residues in the structure and biological activity of botulinum neurotoxin types A and E. Biochem Biophys Res Commun 93:369–375

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Woody MA (1984) Amino acid composition of Clostridium botulinum type B neurotoxin. Toxicon 22:312–315

    PubMed  CAS  Google Scholar 

  • DasGupta BR, Bandyopadhyay S, Clark AW, Herian A (1987a) Botulinum neurotoxin - structure function and similarity to tetanus. Toxicon 25:137–138

    Google Scholar 

  • DasGupta BR, Foley J, Niece R (1987b) Partial sequence of the light chain of botulinum neurotoxin type A. Biochemistry 26:4162

    Google Scholar 

  • DasGupta BR, Foley J, Wadsworth C (1988) Botulinum neurotoxin type A: partial sequence of L-chain and its two fragments. FASEB J 2:A1750

    Google Scholar 

  • Datta A, DasGupta BR (1988a) Circular dichroic and fluororescence spectroscopic study of the conformation of botulinum neurotoxin types A and E. Mol Cell Biochem 79:153–159

    PubMed  CAS  Google Scholar 

  • Datta A, DasGupta BR (1988b) Botulinum neurotoxin types A, B & E: pH induced difference spectra. Mol Cell Biochem 81:187–194

    PubMed  CAS  Google Scholar 

  • Dauzenroth ME, Dolly JO, Habermann E, Mochida S, Poulain B, Tauc L, Wadsworth JDF, Weller U (1989) Light chain of tetanus toxin can be internalized into a cholinergic synapse of Aplysia by the heavy chain of botulinum neurotoxin and depresses the transmitter release. J Physiol (Lond) 418:71P

    Google Scholar 

  • Dejongh KS, Schwartzkopf CL, Howden MEH (1989) Clostridium botulinum type D neurotoxin - purification and detection. Toxicon 27:221–228

    CAS  Google Scholar 

  • Dekleva ML, DasGupta BR (1989) Nicking of single chain Clostridium botulinum type A neurotoxin by an endogenous protease. Biochem Biophys Res Commun 162:767–772

    PubMed  CAS  Google Scholar 

  • Dekleva ML, DasGupta BR (1990) Purification and characterization of a protease from Clostridium botulinum type A that nicks single-chain type A botulinum neurotoxin into the di-chain form. J Bacteriol 172:2498–2503

    PubMed  CAS  Google Scholar 

  • Dekleva ML, DasGupta BR, Sathyamoorthy V (1989) Botulinum neurotoxin type A radiolabeled at either the light or the heavy chain. Arch Biochem Biophys 274:235–240

    PubMed  CAS  Google Scholar 

  • Diamond J, Mellanby J (1971) The effect of tetanus toxin in the goldfish. J Physiol (Lond) 215:727–741

    CAS  Google Scholar 

  • Diaz J, Molgo J, Pecot-Dechavassine M (1989) Sprouting of frog motor nerve terminals after long-term paralysis by botulinum type A toxin. Neurosci Lett 96:127–132

    PubMed  CAS  Google Scholar 

  • Dickson EC, Shevky R (1923) Botulism, studies on the manner in which the toxin of Clostridium botulinum acts upon the body. II. The effect on the voluntary nervous system. J Exp Med 37:711–731

    PubMed  CAS  Google Scholar 

  • DIMari SJ, Cumming MA, Hash JM, Robinson JP (1982) Purification of tetanus toxin and its peptide components by preparative polyacrylamide gel electrophoresis. Arch Biochem 214:342–353

    PubMed  CAS  Google Scholar 

  • Dolezal V, Vyskocil F, Tucek S (1983) Decrease of the spontaneous nonquantal release of acetylcholine from the phrenic nerve in botulinum-poisoned rat diaphragm. Pfiugers Arch 397:319–322

    CAS  Google Scholar 

  • Dolly JO, Williams RS, Black JD, Tse CK, Hambleton P, Meiling J (1982) Localization of sites for I125-labeled botulinum neurotoxin at murine neuromuscular junction and its binding to rat brain synaptosomes. Toxicon 20:141–148

    PubMed  CAS  Google Scholar 

  • Dolly JO, Black J, Williams RS, Meiling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307:457–460

    PubMed  CAS  Google Scholar 

  • Dolly JO, Lande S, Wray DW (1987) The effects of in vitro application of purified botulinum neuro toxin at mouse motor-nerve terminals. J Physiol (Lond) 386:475–484

    CAS  Google Scholar 

  • Dolly JO, Maisey EA, Poulain B, Tauc L, Wadsworth JDF (1988) Uptake of both light and heavy chains of botulinum neurotoxin by cholinergic neurons of Aplysia is mediated by the larger chain. J Physiol (Lond) 406:196

    Google Scholar 

  • Donovan JJ, Middlebrook JL (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 25:2872–2876

    PubMed  CAS  Google Scholar 

  • Dreyer F, Schmitt A (1981) Different effect of botulinum A toxin and tetanus toxin on the transmitter releasing process at the mammalian neuromuscular junction. Neurosci Lett 26:307–311

    PubMed  CAS  Google Scholar 

  • Dreyer F, Schmitt A (1983) Transmitter release in tetanus and botulinum A toxin- poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Arch 399:228–234

    PubMed  CAS  Google Scholar 

  • Dreyer F, Mallart A, Brigant JL (1983) Botulinum A toxin and tetanus toxin do not affect presynaptic membrane currents in mammalian motor nerve endings. Brain Res 270:373–375

    PubMed  CAS  Google Scholar 

  • Dreyer F, Becker C, Bigalke H, Funk J, Penner R, Rosenberg F, Ziegler M (1984) Action of botulinum A toxin and tetanus toxin on synaptic transmission. J Physiol (Paris) 79:252–258

    CAS  Google Scholar 

  • Dreyer F, Rosenberg F, Becker C, Bigalke H, Penner R (1987) Differential effects of various secretagogues on quantal transmitter release from mouse motor nerve terminals treated with botulinum A and tetanus toxin. Naunyn-Schmiedebergs Arch Pharmacol 335:1–7

    PubMed  CAS  Google Scholar 

  • Duchen LW, Strich SJ (1968) The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Q J Exp Physiol 53:84–89

    CAS  Google Scholar 

  • Duchen LW, Tonge DA (1973) The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plate in slow and fast skeletal muscle of the mouse. J Physiol (Lond) 228:157–172

    CAS  Google Scholar 

  • Duchen LW, Gomez S, Hornsey S (1981) Effects of X-irradiation on axonal sprouting induced by botulinum toxin in skeletal muscle of the mouse. J Physiol (Lond) 312:31–32

    Google Scholar 

  • Dunant Y, Esquerda JE, Loctin F, Marsal J, Muller D (1987) Botulinum toxin inhibits quantal acetylcholine release and energy metabolism in the Torpedo electric organ. J Physiol (Lond) 385:677–692

    CAS  Google Scholar 

  • Dunant J, Loctin F, Marsal J, Muller D, Parducz A, Rabasseda X (1988) Energy metabolism and quantal acetylcholine release: effects of botulinum toxin, 1-fluoro-2, 4-dinitrobenzene, and diamide in the Torpedo electric organ. J Neurochem 50:431–439

    PubMed  CAS  Google Scholar 

  • Duprat AM, Gualandris L, Foulquier F, Paulin D, Bizzini B (1986) Neural induction and in vitro initial expression of neurofilament and tetanus toxin binding site molecules in amphibians. Cell Differ 18:57–64

    PubMed  CAS  Google Scholar 

  • Duxon MJ, Stolkin C (1979) Early structural changes in the motor nerve terminals of rat skeletal muscle after local injection of botulinum toxin. J Physiol (Lond) 296:12P

    Google Scholar 

  • Edmunds CW, Long PH (1923) Contribution to the pathologic physiology of botulism. J Am Med Assoc 81:542–547

    Google Scholar 

  • Egea G, Rabasseda X, Solsona C, Marsal J, Bizzini B (1990) Tetanus toxin blocks potassium-induced transmitter release and rearrangement of intramembrane particles at pure cholinergic synaptosomes. Toxicon 28:311–318

    PubMed  CAS  Google Scholar 

  • Eisel U, Jarausch W, Goretzki K, Henschen A, Engels J, Weller U, Hudel M, Habermann E (1986) Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. EMBO J 5:2495–2502

    PubMed  CAS  Google Scholar 

  • Eisel U, Binz T, Niemann H (1987) Characterization of the tetanus toxin promoter and expression of nontoxic fragments in Escherichia coli. Biol Chem Hoppe Seyler 368:1037–1038

    Google Scholar 

  • Eisenbarth GS, Shimizu K, Bowring MA, Wells S (1982) Expression of receptors for tetanus toxin and monoclonal antibody A2B5 by pancreatic islet cells. Proc Natl Acad Sci USA 79:5066–5070

    PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT, Mseittif LM, Strom MS (1988) Evidence for plasmidmediated toxin and bacteriocin production in Clostridium botulinum type G. Appl Environ Microbiol 54:1405–1408

    PubMed  CAS  Google Scholar 

  • Erdmann G, Wiegand H, Wellhöner HH (1975) Intraaxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn-Schmiedebergs Arch Pharmacol 290:357–373

    PubMed  CAS  Google Scholar 

  • Erdmann G, Hanauske A, Wellhöner HH (1981) Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracisternally injected antitetanus toxoid F(ab´)2 fragments. Brain Res 211:367–377

    PubMed  CAS  Google Scholar 

  • Evans DM, Williams RS, Shone CC, Hambleton P, Melling J, Dolly JO (1986) Botulinum neurotoxin type B - its purification, radioiodination and interaction with rat brain synaptosomal membranes. Eur J Biochem 154:409–416

    PubMed  CAS  Google Scholar 

  • Evans DM, Richardson PJ, Fine A, Mason WT, Dolly JO (1988) Relationship of accpetors for botulinum neurotoxins (type A and type B) in rat CNS with the cholinergic marker, Chol-I. Neurochem Int 13:25–36

    PubMed  CAS  Google Scholar 

  • Evinger C, Erichsen JT (1986) Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Brain Res 380:383–388

    PubMed  CAS  Google Scholar 

  • Fairweather NF, Lyness VA (1986) The complete nucleotide sequence of tetanus toxin. Nucleic Acids Res 14:7809–7812

    PubMed  CAS  Google Scholar 

  • Fairweather NF, Lyness VA, Pickard DJ, Allen G, Thomson RO (1986) Cloning, nucleotide sequencing, and expression of tetanus toxin fragment C in Escherichia coli. J Bacteriol 165:21–27

    PubMed  CAS  Google Scholar 

  • Fairweather NF, Lyness VA, Makel DJ (1987) Immunization of mice against tetanus with fragments of tetanus toxin synthesized in Escherichia coli. Infect Immun 55:2541–2545

    PubMed  CAS  Google Scholar 

  • Fedinec AA, Lazarovici P, Yavin E, Bizzini B (1986) Two 125I-tetanus toxins with different affinities for gangliosides - retrograde transport in the rat sciatic nerves. J Toxicol Toxin Rev 5:191

    Google Scholar 

  • Fedinec AA, Toth P, Bizzini B (1987) Theophylline and CGMP prolong the survival of mice paralyzed with tetanus toxin fragment Ibc. Toxicon 25:139–140

    Google Scholar 

  • Figliomeni B, Grasso A (1985) Tetanus toxin affects the K+-stimulated release of catecholamines from nerve growth factor-treated PC12 cells. Biochem Biophys Res Commun 128:249–256

    PubMed  CAS  Google Scholar 

  • Finkelstein A (1990) Channels formed in phospholipid bilayer membranes by diphteria, tetanus, botulinum and anthrax toxin. J Physiol (Paris) 84:188–190

    CAS  Google Scholar 

  • Finn CW, Silver RP, Habig WH, Hardegree MC, Zon G, Garon CF (1984) The structural gene for tetanus neurotoxin is on a plasmid. Science 224:881–884

    PubMed  CAS  Google Scholar 

  • Fishman PS, Carrigan DR (1988) Motoneuron uptake from the circulation of the binding fragment of tetanus toxin. Arch Neurol 45:558–561

    PubMed  CAS  Google Scholar 

  • Fishman PS, Savitt JM (1989) Transsynaptic transfer of retrogradely transported tetanus protein peroxidase conjugates. Exp Neurol 106:197–203

    PubMed  CAS  Google Scholar 

  • Fishman PS, Savitt JM, Farrand DA (1990) Enhanced CNS uptake of systemically administered proteins through conjugation with tetanus C-fragment. J Neurol Sci 98A:311–325

    Google Scholar 

  • Foca A, Rotirotti D, Mastroeni P, Nistico G (1984) Effects of tetanus toxin after intracerebral microinjection are antagonized by drugs enhancing GABAergic transmission in adult fowls. Neuropharmacology 23:155–158

    PubMed  CAS  Google Scholar 

  • Fujii N, Oguma K, Yokosawa N, Tsuzuki K (1987) Bacteriophages and plasmids in Clostridium botulinum type C and type D. Jpn J Med Sci Biol 40:217

    Google Scholar 

  • Fujita K, Guroff G, Yavin E, Lazarovici P (1988) Preparation of affinity-purified, biotinylated tetanus toxin and characterization of cell-surface binding sites on nerve growth factor-treated PC12 cells. FASEB J 2:1773

    Google Scholar 

  • Gadoth N, Dagan R, Sandbank U, Levy D, Moses SW (1981) Permanent tetraplegia as a consequence of tetanus neonatorum - evidence for widespread lower motor neuron damage. J Neurol Sci 51:273–278

    PubMed  CAS  Google Scholar 

  • Gambale F, Montai M (1988) Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys J 53:771–783

    PubMed  CAS  Google Scholar 

  • Gansel M, Penner R, Dreyer F (1987) Distinct sites of action of clostridial neurotoxins revealed by double-poisoning of mouse motor-nerve terminals. Pfluegers Arch 409:533–539

    CAS  Google Scholar 

  • Gawade S, Bon C, Bizzini B (1985) The use of antibody Fab fragments specifically directed to two different complementary parts of the tetanus toxin molecule for studying the mode of action of the toxin. Brain Res 334:139–146

    PubMed  CAS  Google Scholar 

  • Gimenez JA, DasGupta BR (1990) Botulinum neurotoxin type E fragmented with endoproteinase LYS-C reveals the site trypsin nicks and homology with tetanus neurotoxin. Biochimie 72:213–217

    PubMed  CAS  Google Scholar 

  • Gimenez JA, Sugiyama H (1988) Comparison of toxins of Clostridium butyric um and Clostridium botulinum type E. Infect Immun 56:926–929

    PubMed  CAS  Google Scholar 

  • Gimenez J, Foley J, DasGupta BR (1988) Neurotoxin type E from Clostridium botulinum and Clostridium butyricum - partial sequence and comparison. FASEBJ 2:1750

    Google Scholar 

  • Goldberg RL, Costa T, Habig WH, Kohn LD, Hardegree MC (1981) Characterization of fragment C and tetanus toxin binding to rat brain membranes. Mol Pharmacol 20:565–570

    PubMed  CAS  Google Scholar 

  • Goretzki K, Habermann E (1985) Enzymatic hydrolysis of tetanus toxin by intrinsic and extrinsic proteases - characterization of the fragments by monoclonal antibodies. Med Microbiol Immunol (Berl) 174:139–150

    CAS  Google Scholar 

  • Grothe C, Unsicker K (1988) Reciprocal age-dependent pattern of 2 neuronal markers, tetanus toxin and neuron-specific enolase, in postnatal rat sensory and sympathetic neurons. Dev Brain Res 39:1–8

    Google Scholar 

  • Guitart X, Egea G, Solsona C, Marsal J (1987) Botulinum neurotoxin inhibits depolarization-stimulated protein phosphorylation in pure cholinergic synaptosomes. FEBS Lett 219:219–223

    PubMed  CAS  Google Scholar 

  • Gundersen CB (1980) The effects of botulinum toxin on the synthesis, storage and release of acetylcholine. Prog Neurobiol 14:99–119

    PubMed  CAS  Google Scholar 

  • Gundersen CB, Howard BD (1978) The effects of botulinum toxin on acetylcholine metabolism in mouse brain slices and synaptosomes. J Neurochem 31:1005–1013

    PubMed  CAS  Google Scholar 

  • Gundersen CB, Jenden DJ (1983) Spontaneous output of acetylcholine from rat diaphragm preparations declines after treatment with botulinum toxin. J Pharmacol Exp Ther 224:265–268

    PubMed  CAS  Google Scholar 

  • Gundersen CB, Katz B, Miledi R (1982) The antagonism between botulinum toxin and calcium in motor-nerve terminals. Proc R Soc [B] 216:369–376

    CAS  Google Scholar 

  • Guyton AC, MacDonald MA (1947) Physiology of botulinum toxin. Arch Neurol Psychiatry 57:578–592

    PubMed  CAS  Google Scholar 

  • Habermann E (1972) Distribution of 125I-tetanus toxin and 125I-toxoid in rats with local tetanus, as influenced by antitoxin. Naunyn-Schmiedebergs Arch Pharmacol 272:85–88

    Google Scholar 

  • Habermann E (1974) 125I-labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptosomes and ascent to the spinal cord. Naunyn- Schmiedebergs Arch Pharmacol 281:47–56

    PubMed  CAS  Google Scholar 

  • Habermann E (1981) Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particular brain cortex in batch. Naunyn-Schmiedebergs Arch Pharmacol 318:105–111

    PubMed  CAS  Google Scholar 

  • Habermann E, Albus U (1986) Interaction between tetanus toxin and rabbit kidney: a comparison with rat brain preparations. J Neurochem 46:1219–1226

    PubMed  CAS  Google Scholar 

  • Habermann E, Dimpfel W (1973) Distribution of I25I-tetanus toxin and 125I-toxoid in rats with generalized tetanus, as influenced by antitoxin. Naunyn-Schmiedebergs Arch Pharmacol 176:327–340

    Google Scholar 

  • Habermann E, Dreyer G (1986) Clostridial neurotoxins: handling and action at the cellular and molecular level. In: Compans R et al. (eds) Current topics in microbiology and immunology, vol 129. Springer, Berlin Heidelberg New York, pp 93–179

    Google Scholar 

  • Habermann E, Tayot JL (1985) Interaction of solid-phase gangliosides with tetanus toxin and toxoid. Toxicon 23:913–920

    PubMed  CAS  Google Scholar 

  • Habermann E, Wellhöner HH, Räker KO (1977) Metabolic fate of 125I-tetanus toxin in the spinal cord of rats and cats with early local tetanus. Naunyn- Schmiedebergs Arch Pharmacol 299:187–196

    PubMed  CAS  Google Scholar 

  • Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn-Schmiedebergs Arch Pharmacol 311:33–40

    PubMed  CAS  Google Scholar 

  • Habermann E, Bigalke H, Heller J (1981) Inhibition of synaptosomal choline uptake by tetanus and botulinum A toxin. Naunyn-Schmiedebergs Arch Pharmacol 316:135–142

    PubMed  CAS  Google Scholar 

  • Habermann E, Müller H, Hudel M (1988) Tetanus toxin and botulinum A and botulinum C neurotoxins inhibit noradrenaline release from cultured mouse brain. J Neurochem 51:522–527

    PubMed  CAS  Google Scholar 

  • Habig WH, Kenimer JG, Hardegree MC (1983) Retrograde axonal transport of tetanus toxin: toxin mediated antibody transport. In: Liu TY et al. (eds) Frontiers in biochemical and biophysical studies of proteins and membranes. Elsevier, New York, pp 463–473

    Google Scholar 

  • Habig WH, Bigalke H, Bergey GK, Neale EA, Hardegree MC, Nelson PG (1986) Tetanus toxin in dissociated spinal cord cultures: long term characterization of form and action. J Neurochem 47:930–937

    PubMed  CAS  Google Scholar 

  • Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL (1985) Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol 21:654–655

    PubMed  CAS  Google Scholar 

  • Halpern JL, Smith LA, Seamon KB, Groover KA, Habig WH (1989) Sequence homology between tetanus and botulinum toxins detected by an antipeptide antibody. Infect Immun 57:18–22

    PubMed  CAS  Google Scholar 

  • Halpern JL, Habig WH, Neale EA, Stibitz S (1990a) Cloning and expression of functional fragment C of tetanus toxin. Infect Immun 58:1004–1009

    PubMed  CAS  Google Scholar 

  • Halpern JL, Habig WH, Trenchard H, Russell JT (1990b) Effect of tetanus toxin on oxytocin and vasopressin release from nerve endings of the neurohypophysis. J Neurochem 55:2072–2078

    PubMed  CAS  Google Scholar 

  • Hambleton P, Shone C, Wilton-Smith P, Meiling J (1984) A possible common antigen on chostridial toxins detected by monoclonal antibotulinum neurotoxin antibodies. In: Alouf JE, Fehrenbach FJ, Freer JH, Jeljaszewicz J (ed) Bacterial protein toxins. Academic London, pp 449–450

    Google Scholar 

  • Harris AJ, Miledi R (1971) The effect of type D botulinum toxin on frog neuromuscular junctions. J Physiol (Lond) 217:497–515

    CAS  Google Scholar 

  • Hauser D, Eklund MW, Kurazono H, Benz TH, Niemann H, Gill DM, Boquet P, Popoff MR (1990) Nucleotide sequence of Clostridium botulinum C1 neurotoxin. Nucleic Acids Res 18:4924

    PubMed  CAS  Google Scholar 

  • Haynes BF, Shimizu K, Eisenbarth GS (1983) Identification of human and rodent thymic epithelium using tetanus toxin and monoclonal-antibody A2B5. J Clin Invest 71:9–14

    PubMed  CAS  Google Scholar 

  • Heredero J, Oja SS (1985) Ruthenium red interferes with the tetanus toxin inhibition of potassium-stimulated GABA release from rat cerebral cortex slices. Neurochem Int 7:861–866

    PubMed  CAS  Google Scholar 

  • Higashida H, Sugimoto N, Ozutsumi K, Miki N, Matsuda M (1983) Tetanus toxin: a rapid and selective blockade of the calcium, but not sodium, component of action potentials in cultured neuroblastoma N1E-115 cells. Brain Res 279:363–368

    PubMed  CAS  Google Scholar 

  • Hilbig G, Räker KO, Wellhöner HH (1979) Local tetanus in rats; concentration of amino acids as studied in spinal cord segments, spinal roots, and dorsal root ganglia. Naunyn-Schmiedebergs Arch Pharmacol 307:287–290

    PubMed  CAS  Google Scholar 

  • Ho JL, Klempner MS (1985a) Tetanus toxin alters calcium homeostasis of human macrophages stimulated by the calcium ionophbre ionomycin. Clin Res 33:405

    Google Scholar 

  • Ho JL, Klempner MS (1985b) Tetanus toxin inhibits secretion of lysosomal contents from human macrophages. J Infect Dis 152:922–928

    PubMed  CAS  Google Scholar 

  • Ho JL, Klempner MS (1986) Inhibition of macrophage secretion by tetanus toxin is not directly linked to cytosolic calcium homeostasis. Biochem Biophys Res Commun 135:16–24

    PubMed  CAS  Google Scholar 

  • Ho JL, Klempner MS (1988) Diminished activity of protein kinase C in tetanus toxin treated macrophages and in the spinal cord of mice manifesting generalized tetanus intoxication. J Infect Dis 157:925–933

    PubMed  CAS  Google Scholar 

  • Hoch DH, Romero-Mira M, Ehrlich BE, Finkeistein A (1985) Channels formed by botulinum, tetanus, and diphteria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci USA 82:1692–1697

    PubMed  CAS  Google Scholar 

  • Hodson AK, Curbeam RV (1982) Rat hippocampal neurons maintained in serumfree media can be positively identified with monoclonal antibody A285 and tetanus toxin. Clin Res 30:899A

    Google Scholar 

  • Huba R, Hofmann HD (1988) Tetanus toxin binding to isolated and cultured rat retinal glial-cells. GLIA 1:156–164

    PubMed  CAS  Google Scholar 

  • Janicki P, Habermann E (1983) Tetanus and botulinum toxins inhibit, and black widow spider venom stimulates the release of methionine-enkephalin-like material in vitro. J Neurochem 41:395–402

    PubMed  CAS  Google Scholar 

  • Jefferys JGR, Empson RM (1990) Development of chronic secondary epileptic foci following intrahippocampal injection of tetanus toxin in the rat. Exp Physiol 75:733–736

    PubMed  CAS  Google Scholar 

  • Kaeser HE, Saner A (1969) Tetanus toxin, a neuromuscular blocking agent. Nature 223:842

    PubMed  CAS  Google Scholar 

  • Kalz HJ, Wellhöner HH (1990) The uptake of tetanus toxin into NG108–15 neuroblastoma-glioma hybrid cells may occur both through the clathrin- dependent and the clathrin-independent path of adsorptive endocytosis. Biol Chem Hoppe Seyler 342: R17

    Google Scholar 

  • Kamata Y, Kozaki S, Sakaguchi G, Iwamori M, Nagai Y (1986) Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem Biophys Res Commun 140:1015–1019

    PubMed  CAS  Google Scholar 

  • Kanda K, Takano K (1983) Effect of tetanus toxin on the excitatory and the inhibitory post-synaptic potentials in the rat motoneurone. J Physiol (Lond) 335:319–333

    CAS  Google Scholar 

  • Kaufmann JA, Way JF, Siegel LS, Selling LC (1985) Comparison of the actions of types A and F botulinum toxin at the rat neuromuscular injection. Toxicol Appl Pharmacol 79:211–217

    Google Scholar 

  • Kenimer JG, Habig WH, Hardegree MC (1983) Monoclonal antibodies as probes of tetanus toxin structure and function. Infect Immun 42:942–948

    PubMed  CAS  Google Scholar 

  • Kim Yi, Lomo T, Lupa MT, Thesleff S (1984) Miniature end plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol (Lond) 356:587–599

    Google Scholar 

  • Kimura K, Fujii M, Tsuzuki K, Murakami T, Indoh T, Yokosawa N, Takeshi K, Syuto B, Oguma K (1990) The complete nucleotide sequence of the gene coding for botulinum type Cl toxin in the C-ST phage genome. Biochem Biophys Res Commun 171:1304–1311

    PubMed  CAS  Google Scholar 

  • Kitamura M, Sone S (1987) Binding ability of Clostridium botulinum neurotoxin to the synaptosomes upon treatment with various kinds of enzymes. Biochem Biophys Res Commun 143:928–933

    PubMed  CAS  Google Scholar 

  • Kitamura M, Iwamori M, Nagai Y (1980) Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta 628:328–335

    PubMed  CAS  Google Scholar 

  • Klyucheva W, Saprykin TP, Dolgikh MS, Blagoves VA (1982) The amino-acid composition of components from Cl. botulinum of the B-type (in Russian). Vopr Med Khim 28:29

    CAS  Google Scholar 

  • Knight DE (1986) Botulinum toxin types A, B and D inhibit catecholamine secretion from bovine adrenal medullary cells. FEBS Lett 207:222–226

    PubMed  CAS  Google Scholar 

  • Koulakof A, Bizzini B, Berwald-Netter Y (1982) A correlation between the appearance and the evolution of tetanus toxin binding cells and neurogensis. Dev Brain Res 5:139–147

    Google Scholar 

  • Koulakoff A, Bizzini B, Berwald-Netter Y (1983) Neuronal acquisition of tetanus toxin binding sites: relationship with the last mitotic cycle. Dev Biol 100:350–357

    PubMed  CAS  Google Scholar 

  • Kozaki S, Ogasawara J, Shimote Y, Kamata Y, Sakaguchi G (1987) Antigenic structure of Clostridium botulinum type B neurotoxin and its interaction with gangliosides, cerebroside, and free fatty-acids. Infect Immun 55:3051–3056

    PubMed  CAS  Google Scholar 

  • Kozaki S, Miki A, Kamata Y, Ogasawara J, Sakaguchi G (1989) Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect Immun 57:2634–2639

    PubMed  CAS  Google Scholar 

  • Kriebel ME, Llados F, Matteson DR (1976) Spontaneous subminiature endplate potentials in mouse diaphragm muscle: evidence for synchronous release. J Physiol (Lond) 262:553–581

    CAS  Google Scholar 

  • Krieglstein K, Henschen A, Weller U, Habermann E (1990) Arrangement of disulfide bridges and positions of sulfhydryl groups in tetanus toxin. Eur J Biochem 188:39–45

    PubMed  CAS  Google Scholar 

  • Kryzhanovsky, GN, Kasymov AKh (1964) Action of tetanus toxin on neuromuscular transmission. Bull Exp Biol Med (Engl Transl) 58:1199–1203

    Google Scholar 

  • Kryzhanovsky GN, Pozdynakov OM, D’yakonova MV, Polgar AA, Smirnova VS (1971) Disturbance of neurosecretion in myoneural junctions of muscle poisoned with tetanus toxin. Bull Exp Biol Med (Engl Transl) 72:1387–1391

    Google Scholar 

  • Kryzhanovsky GN, Lutsenko VK, Sakharova OP, Lutsenko NG (1982) Disturbance of H-3-GABA transport in synaptosomes by tetanus toxin. Bull Exp Biol Med (Engl Transl) 94:910–914

    Google Scholar 

  • Kurokawa Y, Oguma K, Yokosawa N, Syuto B, Fukatsu R, Yamashita I (1987) Binding and cytotoxic effects of Clostridium botulinum A, Cl and E toxins in primary neuron cultures from fetal mouse brains. J Gen Microbiol 133:2647–2657

    PubMed  CAS  Google Scholar 

  • Laird WJ, Aaronson W, Silver RP, Habig WH, Hardegree MC (1980) Plasmid- associated toxigenicity of Clostridium terani. J Infect Dis 142:623

    PubMed  CAS  Google Scholar 

  • Lamanna C, Elhage AN, Vick JA (1988) Cardiac effects of botulinal toxin. Arch Int Pharmacodyn 293:69–83

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Yavin E (1985a) Tetanus toxin interaction with human erythrocytes. I. Properties of polysialoganglioside association with the cell surface. Biochim Biophys Acta 812:523–532

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Yavin E (1985b) Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation. Biochim Biophys Acta 812:532–542

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Yavin E (1986) Affinity-purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component. Biochemistry 25:7047–7054

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Tayot JL, Yavin E (1984) Affinity chromatographic purification and characterization of two iodinated tetanus toxin fractions exhibiting different binding properties. Toxicon 22:401–413

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Yanai P, Yavin E (1987) Molecular interactions between micellar polysialogangliosides and affinity-purified tetanotoxins in aqueous solution. J Biol Chem 262:2645–2651

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Fujita K, Contreras ML, Diorio JP, Lelkes PI (1989) Affinity purified tetanus toxin binds to isolated chromaffin granules and inhibits catecholamine release in digitonin-permeabilized chromaffin cells. FEBS Lett 253:121–128

    PubMed  CAS  Google Scholar 

  • Lewis GE (1981) Biomedical aspects of botulism. Academic, New York

    Google Scholar 

  • Lietzke R, Unsicker K (1983) Tetanus toxin binding to different morphological phenotypes of cultured rat and bovine adrenal medullary cells. Neurosci Lett 38:233–238

    PubMed  CAS  Google Scholar 

  • Lin CS, Habig WH, Hardegree MC (1985) Antibodies against the light chain of tetanus toxin in human sera. Infect Immun 49:111–115

    PubMed  CAS  Google Scholar 

  • Lomneth R, Suszkiw JB, DasGupta BR (1990) Response of the chick ciliary ganglion iris neuromuscular preparation to botulinum neurotoxin. Neurosci Lett 113:211–216

    PubMed  CAS  Google Scholar 

  • Lundh H (1983) Antagonism of botulinum toxin paralysis by low temperature. Muscle Nerve 6:56–60

    PubMed  CAS  Google Scholar 

  • Lupa MT, Tabti N, Thesleff S, Vyskocil F, Yu SP (1987) The nature and origin of calcium-insensitive miniature end-plate potentials at rodent neuromuscular junctions. J Physiol (Lond) 381:607–618

    Google Scholar 

  • MacKenzie I, Burnstock G, Dolly JO (1982) The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and non-adrenergic atropine resistant autonomic neuro-muscular transmission. Neuroscience 7:997–1006

    PubMed  CAS  Google Scholar 

  • Maisey EA, Wadsworth JDF, Poulain B, Shone CC, Meiling J, Gibbs P, Tauc L, Dolly JO (1988) Involvement of the constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release. Eur J Biochem 177:683–691

    PubMed  CAS  Google Scholar 

  • Makoff AJ, Oxer MD, Romanos MA, Fairwheather NF, Ballantine S (1989) Expression of tetanus toxin fragment C in E. coli: high level expression by removing rare codons. Nucleic Acids Res 17: 10191–10202

    PubMed  CAS  Google Scholar 

  • Mallart A, Molgo J, Angaut-Petit D, Thesleff S (1989) Is the internal calcium regulation altered in type A botulinum toxin poisoned motor endings? Brain Res 479:167–171

    PubMed  CAS  Google Scholar 

  • Manning KA, Erichsen JT, Evinger C (1990) Retrograde transneuronal transportproperties of fragment C of tetanus toxin. Neuroscience 34:251–263

    PubMed  CAS  Google Scholar 

  • Marconi P, Pitzurra M, Vicchiar A, Pitzurra L, Bistoni F (1982) Resistance induced by concanavalin A and phytohemagglutinin P against tetanus toxin in mice. Annu Rev Immunol 133:15–27

    Google Scholar 

  • Marsal J, Solsona C, Rabasseda X, Blasi J, Casanova A (1987) Depolarization- induced release of ATP from cholinergic synaptosomes is not blocked by botulinum toxin type A. Neurochem Int 10:295–302

    PubMed  CAS  Google Scholar 

  • Marsal J, Solsona C, Rabasseda X, Blasi J (1988) Botulinum neurotoxin inhibits the release of newly synthesized acetylcholine from Torpedo electric organ synaptosomes. Neurochem Int 12:439–445

    PubMed  CAS  Google Scholar 

  • Marsal J, Egea G, Solsona C, Rabasseda X, Blasi J (1989) Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of torpedo synaptosomes. Proc Natl Acad Sci USA 86:372–376

    PubMed  CAS  Google Scholar 

  • Marxen P, Bigalke H (1989) Tetanus toxin: inhibitory action in chromaffin cells is initiated by specified types of gangliosides and promoted in low ionic strength solution. Neurosci Lett 107:261–266

    PubMed  CAS  Google Scholar 

  • Marxen P, Bigalke H (1991a) The chromaffin cell: a suitable model for investigating the actions and the metabolism of tetanus and botulinum A neurotoxins. Naunyn-Schmiedebergs Arch Pharmacol 343 [Suppl]: 12–29

    Google Scholar 

  • Marxen P, Bigalke H (1991b) Tetanus and botulinum A toxins inhibit stimulated F-actin rearrangement in chromaffin cells. Neuroreport 2:33–37

    PubMed  CAS  Google Scholar 

  • Marxen P, Fuhrmann U, Bigalke H (1989) Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27:849–859

    PubMed  CAS  Google Scholar 

  • Marxen P, Ahnert-Hilger G, Wellhöner HH, Bigalke H (1990) Tetanus antitoxin binds to intracellular tetanus toxin in permeabilized chromaffin cells without restoring Ca2+-induced exocytosis. Toxicon 28:1077–1082

    PubMed  CAS  Google Scholar 

  • Matsuoka I, Syuoto B, Kurihara K, Kubo S (1986) Cytotoxic action of Clostridium botulinum type Cl toxin on neurons of central nervous system in dissociated culture. Jpn J Med Sci Biol 39:247–248

    Google Scholar 

  • Matsuda M, Yoneda M (1976) Reconstitution? of tetanus neurotoxin from two antigenically active polypeptide fragments. Biochem Biophys Res Commun 68:668–674

    PubMed  CAS  Google Scholar 

  • Matsuda M, Sugimoto N, Ozutsumi K, Hirai T (1982) Acute botulinum-like intoxication by tetanus neurotoxin in mice. Biochem Biophys Res Commun 104:799–805

    PubMed  CAS  Google Scholar 

  • Matsuda M, Lei DL, Sugimoto M, Ozutsumi K, Okabe T (1989) Isolation, purification and characterization of fragment B, the NH2-terminal half of the heavy chain of tetanus toxin. Infect Immun 57:3588–3593

    PubMed  CAS  Google Scholar 

  • McCroskey L, Hatheway CL, Fenicia L, Pasolini B, Aureli P (1986) Characterization of an organism that procudes type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J Clin Microbiol 23:201–202

    PubMed  CAS  Google Scholar 

  • McInnes C, Dolly JO (1990) Ca2+-dependent noradrenaline release from permeabilised PC12 cells is blocked by botulinum neurotoxin A or its light chain. FEBS Lett 261:323–326

    PubMed  CAS  Google Scholar 

  • Meckler RL, Baron R, McIachlan EM (1990) Selective uptakes of C-fragment of tetanus toxin by sympathetic preganglionic nerve terminals. Neuroscience 36:823–829

    PubMed  CAS  Google Scholar 

  • Mellanby J (1984) Commentary: comparative activities of tetanus and botulinum toxins. Neuroscience 11:29–34

    PubMed  CAS  Google Scholar 

  • Mellanby J, Green J (1981) How does tetanus toxin act? Neuroscience 6:281–300

    PubMed  CAS  Google Scholar 

  • Mellanby J, Leonard A (1986) Effect of C-fragment of tetanus toxin on subsequent toxicity of the toxin in vivo. J Med Microbiol 22:16R

    Google Scholar 

  • Mellanby J, Thompson PA (1972) The effect of tetanus toxin at the neuromuscular junction in the goldfish. J Physiol (Lond) 224:407–419

    CAS  Google Scholar 

  • Mellanby J, Thompson PA (1975) The effect of lanthanum on miniature junction potentials at the goldfish neuromuscular junction after block by tetanus toxin. J Physiol (Lond) 252:81

    Google Scholar 

  • Mellanby J, Beaumont MA, Thompson PA (1988) The effect of lanthanum on nerve terminals in goldfish muscle after paralysis with tetanus toxin. Neuroscience 25:1095–1106

    PubMed  CAS  Google Scholar 

  • Menestrina G, Forti S, Gambale F (1989) Interaction of tetanus toxin with lipid vesicles - Effects of pH, surface-charge, and transmembrane potential on the kinetics of channel formation. Biophys J 55:393–405

    PubMed  CAS  Google Scholar 

  • Molgo J, Lemeignan M, Thesleff S, Lechat P (1984) Potentiation of aminosidic antibiotics of the inhibitor effect of botulic toxin on nervous motorial insertion - antagonism by diamine 3,4 pyridine. J Pharmacol 15:508–509

    Google Scholar 

  • Molgo J, DasGupta BR, Thesleff S (1989a) Characterization of the actions of botulinum neurotoxin type E at the rat neuromuscular junction. Acta Physiol Scand 137:497–501

    PubMed  CAS  Google Scholar 

  • Molgo J, Siegel LS, Tabti N, Thesleff S (1989b) A study of synchronization of quantal transmitter release from mammalian motor endings by the use of botulinal toxins type A and D. J Physiol (Lond) 411:195–205

    CAS  Google Scholar 

  • Molgo J, Comelia JX, Angaut-Petit D, Pecot-Dechavassine M, Tabti N, Faille L, Mallart A, Thesleff S (1990) Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J Physiol (Paris) 84:152–166

    CAS  Google Scholar 

  • Montecucco C, Schiavo G, Brunner J, Duflot E, Boquet P, Roa M (1986) Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry 25:919–923

    PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G, Gao Z, Bauerlein E, Boquet P, DasGupta BR (1988) Interaction of botulinum and tetanus toxins with the lipid bilayer surface. Biochem J 251:379–383

    PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G, DasGupta BR (1989) Effect of pH on the interaction of botulinum neurotoxin A, neurotoxin B and neurotoxin E with liposomes. Biochem J 259:47–53

    PubMed  CAS  Google Scholar 

  • Montesano R, Roth J, Robert A, Orci L (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxin. Nature 296:651–653

    PubMed  CAS  Google Scholar 

  • Moriishi K, Syuto B, Oguma K, Saito M (1990) Separation of toxic activity and ADP-ribosylation activity of botulinum neurotoxin D. J Biol Chem 265:16614–16616

    PubMed  CAS  Google Scholar 

  • Morris NP, Consiglio E, Kohn LD, Habig WH, Hardegree MC, Helting TB (1980) Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem 255:6071–6076

    PubMed  CAS  Google Scholar 

  • Metezeau P, Desban M (1982) Botulinum toxin type A: kinetics of calcium dependent paralysis of the neuromuscular junction and antagonism by drugs and animal toxins. Toxicon 20:649–654

    PubMed  CAS  Google Scholar 

  • Meyer-Eppler TBE, Wellhöner HH (1983) Tetanus toxin-[2,3-3H]propionamide. Arch Toxicol 52:303–310

    PubMed  CAS  Google Scholar 

  • Middlebrook JL (1986) Cellular mechanism of action of botulinum neurotoxin. J Toxicol Toxin Rev 5:177–196

    CAS  Google Scholar 

  • Middlebrook JL, Dorland RB (1984) Bacterial toxins: cellular mechanism of action. Microbiol Rev 48:199–221

    PubMed  CAS  Google Scholar 

  • Mikhailov VV, Barashkov GN (1977) Mechanism of disturbance of inhibitory electrogenesis in spinal *-motoneurons in experimental local botulinus poisoning. Bull Exp Biol Med (Engl Transl) 83:771–774

    Google Scholar 

  • Mikhailov W, Shubin AI (1987) Mechanism of paradoxical resistance of the digastric muscle to the action of tetanus toxin. Bull Exp Biol Med (Engl Transl) 103:604–606

    Google Scholar 

  • Mizuguchi J, Yoshida T, Sato Y, Nagaoka F, Kondo S, Matuhasi T (1982) Requirements for at least two distinct monoclonal antibodies for efficient neutralization of tetanus toxin in vivo. Naturwissenschaften 69:597–598

    PubMed  CAS  Google Scholar 

  • Mochida S, Poulain B, Weller U, Habermann E, Tauc L (1989) Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain. FEBS Lett 253:47–51

    PubMed  CAS  Google Scholar 

  • Mochida S, Poulain B, Eisel U, Binz T, Kurazono H, Niemann H, Tauc L (1990) Exogenous messenger-RNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons. Proc Natl Acad Sci USA 87:7844–7848

    PubMed  CAS  Google Scholar 

  • Molgo J, Thesleff S (1984) Studies on the mode of action of botulinum toxin type A at the frog neuromuscular junction. Brain Res 293:309–316

    Google Scholar 

  • Murayama S, Syuto B, Oguma K, Iida H, Kubo S (1984) Comparison of Clostridium botulinum toxins type D and C, in molecular property, antigenicity and binding ability to rat brain synaptosomes. Eur J Biochem 142:487–492

    PubMed  CAS  Google Scholar 

  • Murayama S, Umezawa J, Terajima J, Syuto B, Kubo S (1987) Action of botulinum neurotoxin on acetylcholine release from rat brain synaptosomes: putative internalization of the toxin into synaptosomes. J Biochem 102:1355–1364

    PubMed  CAS  Google Scholar 

  • Nakov R, Habermann E, Hertting G, Wurster S, Allgaier C (1989) Effects of botulinum A toxin on presynaptic modulation of evoked transmitter release. Eur J Pharmacol 164:45–53

    PubMed  CAS  Google Scholar 

  • Nathan A, Yavin E (1989) Periodate-modified gangliosides enhance surface binding of tetanus toxin to PC12 pheochromocytoma cells. J Neurochem 53:88–94

    PubMed  CAS  Google Scholar 

  • Nishimura M, Kozaki S, Sakagushi G (1988) Zinc antagonises the effect of botulinum type A toxin at the neuromuscular junction. Experientia 44:18–20

    PubMed  CAS  Google Scholar 

  • Nistico G, Mastroeni P, Pitzurra M (1985) Seventh international conference on tetanus, Copanello, Italy, 10–15 Sept 1984. Gangemi, Rome

    Google Scholar 

  • Notter MFD, Leary JF (1985) Flow cytometric analysis of tetanus toxin binding to neuroblastoma cells. J Cell Physiol 125:476–484

    PubMed  CAS  Google Scholar 

  • Notter MFD, Leary JF (1986) Tetanus toxin binding to neuroblastoma cells differentiated by antimitotic agents. Dev Brain Res 26:59–68

    CAS  Google Scholar 

  • Nukina M, Mochida Y, Sakaguchi S, Sakaguchi G (1988) Purification of Clostridium botulinum type G progenitor toxin. Zentralbl Bakteriol Mikrobiol Hyg [A] 268:220–227

    CAS  Google Scholar 

  • Ochanda JO, Syuto B, Naiki M, Kubo S (1986) Binding of Clostridium botulinum neurotoxin to gangliosides. J Biochem 100:127–166

    Google Scholar 

  • Oguma K, Syuto B, Agui T, Ilda H (1981) Homogeneity and heterogeneity of toxins produced by Clostridium botulinum type C and D strains. Infect Immun 34:382–388

    PubMed  CAS  Google Scholar 

  • Osborne RH, Bradford HF (1973) Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla. J Neurochem 21:407–419

    PubMed  CAS  Google Scholar 

  • Ozutsumi K, Sugimoto N, Matsuda M (1985) Rapid, simplified method for production and purification of tetanus toxin. Appl Environ Microbiol 49:939–943

    PubMed  CAS  Google Scholar 

  • Pamphlett R (1989) Early terminal and nodal sprouting of motor axons after botulinum toxin. J Neurol Sci 92:181–192

    PubMed  CAS  Google Scholar 

  • Park MK, Jung HH, Yang KH (1990) Binding of Clostridium botulinum type B toxin to rat brain synaptosomes. FEMS Microbiol Lett 72:243–247

    CAS  Google Scholar 

  • Parton RG, Ockleford CD, Critchley DR (1987) A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J Neurochem 49:1057–1068

    PubMed  CAS  Google Scholar 

  • Parton RG, Ockleford CD, Critchley DR (1988) Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization (BRE 14094). Brain Res 475:118–127

    PubMed  CAS  Google Scholar 

  • Parton RG, Davison MD, Critchley DR (1989) Comparison of the binding characteristics of 2 different preparations of tetanus toxin to rat brain membranes. Toxicon 27:127–135

    PubMed  CAS  Google Scholar 

  • Pearce BR, Gard AL, Dutton GR (1983) Tetanus toxin inhibiton of K+-stimulated [3H]GABA release from developing cell cultures of the rat cerebellum. J Neurochem 40:887–890

    PubMed  CAS  Google Scholar 

  • Penner R, Neher E, Dreyer F (1986) Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324:76–77

    PubMed  CAS  Google Scholar 

  • Pierce EJ, Davison MD, Parton RG, Habig WH, Critchley DR (1986) Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J 236:845–852

    PubMed  CAS  Google Scholar 

  • Pitzurra L, Marconi P, Bistoni F, Blasi E (1989) Selective inhibition of cytokine- induced lysozyme activity by tetanus toxin in the GG2EE macrophage cell line. Infect Immun 57:2452–2456

    PubMed  CAS  Google Scholar 

  • Polak RL, Sellin LC, Thesleff S (1981) Acetylcholine content and release in denervated or botulinum poisoned rat skeletal muscle. J Physiol (Lond) 319:253–259

    CAS  Google Scholar 

  • Polgar AA, Smirnova VS, Kryzhanovsky GN (1972) Activation of synaptic processes in the myoneural junction poisoned by tetanus toxin in response to repetitive nerve stimulation. Bull Exp Biol Med (Engl Transl) 73:504–508

    Google Scholar 

  • Poulain B, Tauc L, Maisey EA, Dolly JO (1988a) Ganglionic synapses of Aplysia as model for the study of the mechanism of action of botulinum neurotoxins. CR Acad Sci [III] 306:483 Taue 488

    CAS  Google Scholar 

  • Poulain B, Tauc L, Maisey EA, Wadsworth JDF, Mohan PM, Dolly JO (1988b) Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc Natl Acad Sci USA 85:4090 Taue 4094

    PubMed  CAS  Google Scholar 

  • Poulain B, Wadsworth DF, Shone CC, Mochida S, Lande S, Meiling J, Dolly JO, Tauc L (1989a) Multiple domains of botulinum neurotoxin contribute to its inhibition of transmitter release in Aplysia neurons. J Biol Chem 264:21928–21933

    PubMed  CAS  Google Scholar 

  • Poulain B, Wadsworth JDF, Maisey EA, Shone CC, Meiling J, Tauc L, Dolly JO (1989b) Inhibition of transmitter release by botulinum neurotoxin A - contribution of various fragments to the intoxication process. Eur J Biochem 185:197–203

    PubMed  CAS  Google Scholar 

  • Presek P, Jarvie PE, Dunkley PR, Dreyer F (1989) Tetanus toxin inhibits the depolarization-dependent increase in synapsin I phosphorylation. Naunyn- Schmiedebergs Arch Pharmacol 339:R18

    Google Scholar 

  • Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188:945–947

    PubMed  CAS  Google Scholar 

  • Puymirat J, Faivreba A, Bizzini B, Tixiervi A (1982) Prenatal and postnatal ontogenesis of neurotransmitter synthetizing enzymes and I125-labeled tetanus toxin binding capacity in the mouse hypothalamus. Dev Brain Res 3:199–206

    CAS  Google Scholar 

  • Rabasseda X, Solsona C, Marsal J, Egea G, Bizzini B (1987) ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin. FEBS Lett 213:337–340

    PubMed  CAS  Google Scholar 

  • Rabasseda X, Blast J, Marsal J, Dunant Y, Casanova A, Bizzini B (1988) Tetanus and botulinum toxins block the release of acetylcholine from slices of rat striatum and from the isolated electric organ of torpedo at different concentrations. Toxicon 26:329–336

    PubMed  CAS  Google Scholar 

  • Raff MC, Abney ER, Cohen J, Lindsay R, Noble M (1983a) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci 3:1289–1300

    PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983b) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    PubMed  CAS  Google Scholar 

  • Rauch G, Gambale F, Montai M (1990) Tetanus toxin channels in phosphatidylserine planar bilayers - conductance states and pH-dependence. Eur Biophys J 18:79–83

    PubMed  CAS  Google Scholar 

  • Reidler J, Robinson JP (1988) Two-dimensional crystals of tetanus toxin. Methods Enzymol 165:389–396

    PubMed  CAS  Google Scholar 

  • Roa M, Boquet P (1985) Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis. J Biol Chem 260:6827–6835

    PubMed  CAS  Google Scholar 

  • Robinson JP (1988) Purification of tetanus toxin and its major peptides. Methods Enzymol 165:85–90

    PubMed  CAS  Google Scholar 

  • Robinson JP, Hash JH (1982) A review of the molecular structure of tetanus toxin. Mol Cell Biochem 48:33–44

    PubMed  CAS  Google Scholar 

  • Robinson JP, Schmid MF, Morgan DG, Chiu W (1988a) Three-dimensional structural analysis of tetanus toxin by electron crystallography. J Mol Biol 200:367–375

    PubMed  CAS  Google Scholar 

  • Robinson JP, Chiu W, DasGupta BR (1988b) Two-dimensional crystals of botulinum toxin type A. FASEB J 2:1749

    Google Scholar 

  • Rogers TR, Snyder SH (1981) High-affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem 256:2402–2407

    PubMed  CAS  Google Scholar 

  • Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220:536–537

    PubMed  CAS  Google Scholar 

  • Sakaguchi G (1983) Clostridium botulinum toxins. Pharmacol Ther 19:165–194

    CAS  Google Scholar 

  • Sanchez-Prieto J, Sihra TS, Evans D, Ashton A, Dolly JO, Nicholls DG (1987) Botulinum toxin blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes. Eur J Biochem 165:675–681

    PubMed  CAS  Google Scholar 

  • Sandberg K, Berry CJ, Eugster E, Rogers TB (1989a) A role for cGMP during tetanus toxin blockade of acetylcholine release in the rat pheochromocytoma (PC12) cell line. J Neurosci 9:3946–3954

    PubMed  CAS  Google Scholar 

  • Sandberg K, Berry CJ, Rogers TB (1989b) Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. Binding, internalization, and inhibition of acetylcholine release. J Biol Chem 264:5679–5686

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S, Petersen OW, VanDeurs B (1989) Control of coated-pit function by cytoplasmic pH. Methods Cell Biol 32:365–382

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta BR (1985a) Partial amino acid sequences of the heavy and light chains of botulinum neurotoxin type E. Biochem Biophys Res Commun 127:768–772

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta RB (1985b) Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. J Biol Chem 260:10461–10466

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta BR (1988) Reductive methylation of lysine residues of botulinum neurotoxin types A and B. Mol Cell Biochem 83:65–72

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta BR, Foley J, Niece RL (1988) Botulinum neurotoxin type A: cleavage of the heavy chain into two halves and their partial sequences. Arch Biochem Biophys 266:142–151

    PubMed  CAS  Google Scholar 

  • Schiavo G, Boquet P, DasGupta BR, Montecucco C (1990) Membrane interactions of tetanus and botulinum neurotoxins - a photolabeling study with photoactivatable phospholipids. J Physiol (Paris) 84:180–187

    CAS  Google Scholar 

  • Schmidt JJ, Sathyamoorthy V, DasGupta BR (1984) Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type A. Biochem Biophys Res Commun 119:900–904

    PubMed  CAS  Google Scholar 

  • Schmidt JJ, Sathyamoorthy V, DasGupta BR (1985) Partial amino acid sequences of botulinum neurotoxins types B and E. Arch Biochem Biophys 238:544–564

    PubMed  CAS  Google Scholar 

  • Schmitt A, Dreyer F, John C (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn- Schmiedebergs Arch Pharmacol 317:326–330

    PubMed  CAS  Google Scholar 

  • Schnitzer J, Kim SU, Schachner M (1984) Some immature tetanus toxin-positive cells share antigenic properties with subclasses of glial cells. An immunofluorescence study in the developing nervous system of the mouse using a new monoclonal antibody. Dev Brain Res 16:203–217

    Google Scholar 

  • Schübel K (1923) Über das Botulinumtoxin. Arch Exp Pathol Pharmakol 96:193–259

    Google Scholar 

  • Schwab ME, Thoenen H (1977) Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res 122:459–474

    PubMed  CAS  Google Scholar 

  • Schwab ME, Suda K, Thoenen H (1979) Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82:798–810

    PubMed  CAS  Google Scholar 

  • Sellin LC (1987) Botulinum toxin and the blockade of transmitter release. Asia Pac J Pharmacol 2:203–222

    CAS  Google Scholar 

  • Sellin LC, Thesleff S (1981) Pre- and post-synaptic actions of botulinum toxin at the rat neuromuscular junction. J Physiol (Lond) 317:487–495

    CAS  Google Scholar 

  • Sellin LC, Kaufman JA, DasGupta BR (1983a) Comparison of the effects of botulinum neurotoxin type A and type E at the rat neuromuscular junction. Med Biol 61:120–125

    PubMed  CAS  Google Scholar 

  • Sellin LC, Thesleff S, DasGupta BR (1983b) Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta Physiol Scand 119:127–133

    PubMed  CAS  Google Scholar 

  • Sheppard AJ, Cussell D, Hughes M (1984) Production and characterization of monoclonal antibodies to tetanus toxin. Infect Immun 43:710–714

    PubMed  CAS  Google Scholar 

  • Sheppard AJ, Hughes M, Stephen J (1987) Affinity purification of tetanus toxin using polyclonal and monoclonal antibody immunoadsorbents. J App1 Bacteriol 62:335–348

    CAS  Google Scholar 

  • Shiells RA, Falk G (1988) Reversal of botulinum toxin synaptic blockade by nicotinamide at the rat neuromuscular junction. Pestic Sci 23:357–358

    Google Scholar 

  • Shone CC, Hambleton P, Meiling J (1985) Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments - proteolytic action near the COOH-terminus of the heavy subunit destroys toxin- binding activity. Eur J Biochem 151:75–82

    PubMed  CAS  Google Scholar 

  • Shone CC, Hambleton P, Meiling J (1987) A 50-KDA fragment from the NH2- terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem 167:175–180

    PubMed  CAS  Google Scholar 

  • Simpson LL (1974) Studies on the binding of botulinum toxin type A to the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacology 13:683–691

    PubMed  CAS  Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction, J Pharmacol Exp Ther 212:16–21

    PubMed  CAS  Google Scholar 

  • Simpson LL (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188

    PubMed  CAS  Google Scholar 

  • Simpson LL (1982) The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther 222:43–48

    PubMed  CAS  Google Scholar 

  • Simpson LL (1983) Ammoniumchloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp Ther 225:546–552

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984a) Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res 305:177–180

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984b) Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin. J Pharmacol Exp Ther 228:600–604

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984c) The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin. J Pharmacol Exp Ther 229:182–187

    PubMed  CAS  Google Scholar 

  • Simpson LL (1985) Pharmacological experiments on the binding and internalization of the 50,000 Dalton carboxyterminus of tetanus toxin at the cholinergic neuromuscular junction. J Pharmacol Exp Ther 234:100–105

    PubMed  CAS  Google Scholar 

  • Simpson LL (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Annu Rev Pharmacol Toxicol 26:427–453

    PubMed  CAS  Google Scholar 

  • Simpson LL (1988) Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins. J Pharmacol Exp Ther 245:867–872

    PubMed  CAS  Google Scholar 

  • Simpson LL (1989) Botulinum neurotoxin and tetanus toxin. Academic, San Diego

    Google Scholar 

  • Simpson LL (1990) The study of clostridial and related toxins - the search for unique mechanisms and common denominators. J Physiol (Paris) 84:143–152

    CAS  Google Scholar 

  • Simpson LL, DasGupta BR (1983) Botulinum neurotoxin type E - studies on mechanism of action and on structure-activity relationships. J Pharmacol Exp Ther 224:135–140

    PubMed  CAS  Google Scholar 

  • Simpson LL, Hoch DH (1985) Neuropharmacological characterization of fragment B from tetanus toxin. J Pharmacol Exp Ther 232:223–227

    PubMed  CAS  Google Scholar 

  • Singh BR, DasGupta BR (1989a) Changes in the molecular topography of the light and heavy chains of type A botulinum neurotoxin following their separation. Biophys Chem 34:259–267

    PubMed  CAS  Google Scholar 

  • Singh BR, DasGupta BR (1989b) Structure of heavy and light chain subunits of type A botulinum neurotoxin analyzed by circular dichroism and fluorescence measurements. Mol Cell Biochem 85:67–73

    PubMed  CAS  Google Scholar 

  • Singh BR, DasGupta BR (1989c) Molecular topography and secondary structure comparisons of botulinum neurotoxin type A, B and E. Mol Cell Biochem 86:87–95

    PubMed  CAS  Google Scholar 

  • Singh BR, DasGupta BR (1989d) Molecular differences between type A botulinum neurotoxin and its toxoid. Toxicon 27:403–410

    PubMed  CAS  Google Scholar 

  • Singh BR, Fuller MP, Schiavo G (1990) Molecular structure of tetanus neurotoxin as revealed by Fourier transform infrared and circular dichroic spectroscopy. Biophys Chem 36:155–166

    PubMed  CAS  Google Scholar 

  • Smith LA, Middlebrook JL (1985) Botulinum and tetanus neurotoxins inhibit guanylate cyclase activity in synaptosomes and cultured nerve cells. Toxicon 23:611

    Google Scholar 

  • Solsona C, Ega A, Blasi J, Casanova C, Marsal J (1990) The action of botulinum toxin on cholinergic nerve terminals isolated from the electric organ of Torpedo marmorata - detection of a putative toxin receptor. J Physiol (Paris) 84:174–179

    CAS  Google Scholar 

  • Spitzer N (1972) Miniature end plate potentials at mammalian neuromuscular junctions poisoned by botulinum toxin. Nature New Biol 237:26–27

    PubMed  CAS  Google Scholar 

  • Stanley EF, Drachman DB (1983) Botulinum toxin blocks quantal but not non- quantal release of ACH at the neuromuscular junction (technical note). Brain Res 261:172–175

    PubMed  CAS  Google Scholar 

  • Staub GC, Walton KM, Schnaar RL, Nichols T, Baichwal R, Sandberg K, Rogers TB (1986) Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line. J Neurosci 6:1443–1451

    PubMed  CAS  Google Scholar 

  • Stecher B, Gratzl M, Ahnert-Hilger G (1989a) Reductive chain separation of botulinum toxin - a prerequisite to its inhibitory action on exocytosis in chromaffin cells. FEBS Lett 248:23–27

    PubMed  CAS  Google Scholar 

  • Stecher B, Weller U, Habermann E, Gratzl M, Ahnert-Hilger G (1989b) The light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffin cells. FEBS Lett 255:391–394

    PubMed  CAS  Google Scholar 

  • Stein P, Biel H (1973) Modification of tetanus toxin with selective chemical reagents. Z Immunitaetsforsch 145:418–431

    CAS  Google Scholar 

  • Stöckel K, Schwab M, Thoenen H (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res 99:1–16

    PubMed  Google Scholar 

  • Sugimoto N, Higashida H, Ozutsumi K, Miki N, Matsuda M (1983) Tetanus toxin blocks Ca spikes in neuroblastoma clone N1E-115 cells. Biochem Biophys Res Commun 115:788–793

    PubMed  CAS  Google Scholar 

  • Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44:419–448

    PubMed  CAS  Google Scholar 

  • Sundstrom LE, Mellanby JH (1990) Tetanus toxin blocks inhibition of granule cells in the dentate gyrus of the urethane-anesthetized rat. Neuroscience 38:621–627

    PubMed  CAS  Google Scholar 

  • Svennerholm L (1970) Gangliosides. In: Laitha A (ed) Handbook of neurochemistry. Plenum, New York, pp 425–452

    Google Scholar 

  • Sverdlov YuS (1969) Potentials of spinal motoneurons in cats with experimental tetanus. Neurophysiology 1:18–25

    Google Scholar 

  • Syuoto B, Kubo S (1981) Separation and characterization of heavy and light chains from Clostridium botulinum type C toxin and their reconstitution. J Biol Chem 256:3712–3717

    Google Scholar 

  • Syuto B, Kubo S (1982) Clostridium botulinum type C toxin - a sketch of the molecule. Mol Cell Biochem 48:25–32

    PubMed  CAS  Google Scholar 

  • Takamizawa K, Iwamori M, Kozaki S, Sakaguchi G, Tanaka R, Takayama H, Nagai Y (1986) TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett 201:229–232

    PubMed  CAS  Google Scholar 

  • Takano K, Kirchner F, Terhaar P, Tiebert B (1983) Effect of tetanus toxin on the monosynaptic reflex. Naunyn-Schmiedebergs Arch Pharmacol 323:217–220

    PubMed  CAS  Google Scholar 

  • Takano K, Kirchner F, Gremmelt A, Matsuda M, Ozutsumi N, Sugimoto N (1989a) Blocking effects of tetanus toxin and its fragment (A-B) on the excitatory and inhibitory synapses of the spinal motoneuron of the cat. Toxicon 27:385–392

    PubMed  CAS  Google Scholar 

  • Takano K, Kirchner F, Tiebert B, Terhaar P (1989b) Presynaptic inhibition of the monosynaptic reflex during local tetanus in the cat. Toxicon 27:431–438

    PubMed  CAS  Google Scholar 

  • Tauc L, Mochida S, Poulain B (1990) Aplysia central synapses as models for the study of botulinum and tetanus neurotoxins. Eur J Pharmacol 183:2087–2088

    Google Scholar 

  • Terajima J, Kuwabara M, Syuto B, Kubo S (1987) Spin labeling study of the role of tyrosyl groups of Cl toxin of Clostridium botulinum strain Stockholm. Jpn J Med Sci Biol 40:204–205

    Google Scholar 

  • Thesleff S (1989) Botulinal neurotoxins as tools in studies of synaptic mechanisms. Q J Exp Physiol Med Sci 74:1003–1017

    CAS  Google Scholar 

  • Thesleff S, Molgo J, Lundh H (1983) Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular-junction. Brain Res 264:89–97

    PubMed  CAS  Google Scholar 

  • Thompson DE, Brehm JK, Oultram JD, Swinfleld TJ, Shone CC, Atkinson T, Meiling J, Minton NP (1990) The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur J Biochem 189:73–118

    PubMed  CAS  Google Scholar 

  • Tse CK, Dolly JG, Hambleton P, Wray D, Meiling J (1982) Preparation and characterization of homogenous neurotoxin type A from Clostridium botulinum, Its inhibitory action on neuronal release of acetylcholine in the absence and presence of ß-bungarotoxin. Eur J Biochem 122:493–500

    PubMed  CAS  Google Scholar 

  • Tsuzuki K, Yokosawa N, Syuto B, Ohishi I, Fujii Kimura K, Oguma K (1987) Establishment of a monoclonal antibody recognizing an antigenic site common to Clostridium botulinum type B, C1, D, and E toxins and tetanus toxin. Infect Immun 56:898–902

    Google Scholar 

  • Van Heyningen S (1982) Similarities in the action of different toxins. In: Cohen P, VanHeyningen S (ed) Molecular action of toxins and viruses. Elsevier Biomedical, Amsterdam, pp 169–187

    Google Scholar 

  • Van Heyningen S (1986) Tetanus toxin. In: Dorner F, Drews J (ed) Pharmacology of bacterial toxins. Pergamon, Oxford, pp 549–569

    Google Scholar 

  • Van Heyningen WE (1959) Chemical assay of the tetanus toxin receptor in nervous tissue. J Gen Microbiol 20:301–309

    Google Scholar 

  • Van Vliet BJ, Sebben M, Dumuis A, Gabrion J, Bockaert J, Pin JP (1989) Endogenous amino-acid release from cultured cerebellar neuronal cells - effect of tetanus toxin on glutamate release. J Neurochem 52:1229–1239

    PubMed  Google Scholar 

  • Veronesi R (1981) Tetanus. Important new concepts. Excerpta Medica, Amsterdam

    Google Scholar 

  • Volk WA, Bizzini B, Snyder RM, Bernhard E, Wagner RR (1984) Neutralization of tetanus toxin by distinct monoclonal antibodies binding to multiple epitopes on the toxin molecule. Infect Immun 45:604–609

    PubMed  CAS  Google Scholar 

  • Wadsworth JDF, Desai M, Tranter HS, King HJ, Hambleton P, Meiling J, Dolly JO, Shone CC (1990) Botulinum type F neurotoxin. Large-scale purification and characterization of its binding to rat cerebrocortical synaptosomes. Biochem J 268:123–128

    PubMed  CAS  Google Scholar 

  • Walton KM, Sandberg K, Rogers TB, Schnaar RL (1988) Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells. J Biol Chem 263:2055–2063

    PubMed  CAS  Google Scholar 

  • Weller U, Taylor CF, Habermann E (1986) Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon 24:1055–1064

    PubMed  CAS  Google Scholar 

  • Weller U, Mauler F, Habermann E (1988) Tetanus toxin - biochemical and pharmacological comparison between its protoxin and some isotoxins obtained by limited proteolysis. Naunyn-Schmiedebergs Arch Pharmacol 338:99–106

    PubMed  CAS  Google Scholar 

  • Weller U, Dauzenroth ME, Meyer zu Heringdorf D, Habermann E (1989) Chains and fragments of tetanus toxin - separation, reassociation and pharmacological properties. Eur J Biochem 182:649–656

    PubMed  CAS  Google Scholar 

  • Wellhöner HH (1982) Tetanus neurotoxin. Rev Physiol Biochem Pharmacol 93:1–68

    PubMed  Google Scholar 

  • Wellhöner HH, Neville DM Jr (1987) Tetanus toxin binds with high affinity to neuroblastoma x glioma hybrid cells NG108–215 and impairs their stimulated acetylcholine release. J Biol Chem 262:7374–7378

    Google Scholar 

  • Wellhöner HH, Seib UC, Hensel B (1973) Local tetanus in cats: the influence of neuromuscular activity on spinal distribution of 125I labelled tetanus toxin. Naunyn-Schmiedebergs Arch Pharmacol 276:387–394

    PubMed  Google Scholar 

  • Wellhöner HH, Bigalke H, Borcholte T, Erdmann G, Eschenhagen T, Jung KH, Marxen P, Peukert U, Neville DM Jr, Srinivasachar K (1990) Uptake of antitetanus F(ab′)2 fragments into eucaryotic cells. J Physiol (Paris) 84:206–210

    Google Scholar 

  • Wellhöner HH, Neville DM Jr, Srinivasachar K, Erdmann G (1991) Uptake and concentration of bioactive macromolecules by K562 cells via the transferrin cycle utilizing an acid-labile transferrin conjugate. J Biol Chem 266:4309–4314

    PubMed  Google Scholar 

  • Wendon LMB (1980) Action of tetanus toxin at the rat neuromuscular junction. J Physiol (Lond) 300:23

    Google Scholar 

  • Wendon LMB, Gill DM (1982) Tetanus toxin action on cultured nerve cells - does it modify a neuronal protein? Brain Res 238:292–297

    PubMed  CAS  Google Scholar 

  • White T, Potter P, Wonnacott S (1980) Depolarization-induced release of ATP from cortical synaptosomes is not associated with acetylcholine release. J Neurochem 34:1109–1112

    PubMed  CAS  Google Scholar 

  • Wiegand H, Wellhöner HH (1977) The action of botulinum A neurotoxin on the inhibition by antidromic stimulation of the lumbar monosynaptic reflex. Naunyn-Schmiedebergs Arch Pharmacol 298:235–238

    PubMed  CAS  Google Scholar 

  • Wiegand H, Wellhöner HH (1979) Electrical excitability of motoneurones in early local tetanus. Naunyn-Schmiedebergs Arch Pharmacol 308:71–76

    PubMed  CAS  Google Scholar 

  • Wiegand H, Erdmann G, Wellhöner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn- Schmiedebergs Arch Pharmacol 292:161–165

    PubMed  CAS  Google Scholar 

  • Wiegand H, Hilbig G, Wellhöner HH (1977) Early local tetanus: does tetanus toxin change the stimulus evoked discharge in afferents from injected muscle? Naunyn-Schmiedebergs Arch Pharmacol 298:189–191

    PubMed  CAS  Google Scholar 

  • Wieraszko A (1985) Attentuation of inhibitory processes in the central nervous system by tetanus toxin: an in vitro study on rat hippocampal slices. Life Sci 37:2059–2065

    PubMed  CAS  Google Scholar 

  • Williams S, Dolly JO, Ise CK, Hambleton P, Meiling J (1983) Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem 131:437–445

    PubMed  CAS  Google Scholar 

  • Wonnacott S (1980) Inhibition by botulinum toxin of acetylcholine release from synaptosomes: latency of action and the role of gangliosides. J Neurochem 34:1567–1573

    PubMed  CAS  Google Scholar 

  • Wonnacott S, Marchbanks RM (1976) Inhibition by botulinum toxin of depolarization-evoked release of (14C)acetylcholine from synaptosomes in vitro. Biochem J 156:701–712

    PubMed  CAS  Google Scholar 

  • Woody MA, DasGupta BR (1988) Fast protein liquid chromatography of botulinum neurotoxin type A, type B and type E. J Chromatogr Biomed Appl 430:279–289

    CAS  Google Scholar 

  • Woody EMA, Herian A, DasGupta BR (1989) Modification of carboxyl groups in botulinum neurotoxin type A and type E. Toxicon 27:1143–1150

    PubMed  CAS  Google Scholar 

  • Yavin E, Habig WH (1984) Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition. J Neurochem 42:1313–1321

    PubMed  CAS  Google Scholar 

  • Yavin E, Nathan A (1986) Tetanus toxin receptors on nerve cells contain a trypsinsensitive component. Eur J Biochem 154:403–407

    PubMed  CAS  Google Scholar 

  • Yavin E, Yavin Z, Habig WH, Hardegree MC (1981) Tetanus toxin association with developing neuronal cell cultures. Kinetic parameters and evidence for ganglioside-mediated internalization. J Biol Chem 256:7014–7022

    PubMed  CAS  Google Scholar 

  • Yavin Z, Yavin E, Kohn LD (1982) Sequestration of tetanus toxin in developing neuronal cell cultures. J Neurosci Res 7:267–278

    PubMed  CAS  Google Scholar 

  • Yavin E, Yavin Z, Kohn LD (1983) Temperature-mediated interaction of tetanus toxin with cerebral neuron cultures: characterization of a neuraminidase- insensitive toxin-receptor complex. J Neurochem 40:1212–1219

    PubMed  CAS  Google Scholar 

  • Yokosawa N, Tsuzuki K, Syuto B, Oguma K (1986) Activation of Clostridium botulinum type E toxin purified by two different methods. J Gen Microbiol 132:1981–1988

    PubMed  CAS  Google Scholar 

  • Yokosawa N, Kurokawa Y, Tsuzuki K, Syuto B, Fuji N, Kimura K, Oguma K (1989) Binding of Clostridium botulinum type C neurotoxin to different neuroblastoma cell lines. Infect Immun 57:272–277

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wellhöner, H.H. (1994). Tetanus and Botulinum Neurotoxins. In: Herken, H., Hucho, F. (eds) Selective Neurotoxicity. Springer Study Edition, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85117-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85117-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57815-4

  • Online ISBN: 978-3-642-85117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics