Skip to main content

Molecular Structure of Forest Trees

  • Chapter
Book cover Clonal Forestry I

Abstract

Knowledge of genome structure is a prerequisite to the genetic engineering of trees and their subsequent clonal propagation, because some characterization of nuclear and organellar DNA must precede its manipulation. We need information on nuclear genome size and how much of the DNA is composed of highly repeated, moderately repeated, and near-unique or single-copy genes. We also need to locate and characterize genes of interest with regard to their molecular structure, repetition frequency, and base sequence. It is useful to know what genes have a highly conserved structure, making them similar in DNA sequence to genes in other organisms. Some genes are steady-state, i.e., expressed in all tissues and at all stages of development, and some are stage- or tissue-specific. Information is also required on the mechanisms regulating expression of genes in forest trees if we are to be successful in eliciting their expression in recombinant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berlyn, GP, Anuruo AO, Beck RC, Cheng J (1987) DNA content polymorphism and tissue culture regeneration in Caribbean pine. Can J Bot 65:954–961.

    Article  CAS  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540.

    Article  PubMed  CAS  Google Scholar 

  • Chesnoy L, Thomas MJ (1971) Electron microscopy studies on gametogenesis and fertilization in gymnosperms. Phytomorphology 21:50–63.

    Google Scholar 

  • Cullis CA, Creissen GP, Gorman SW, Teasdale RD (1988) The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don. In: Cheliak WM, Yapa AC (eds) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working party S2.04–06. Can For Serv PNFI Inf Rep PI-X-80, pp 34-40.

    Google Scholar 

  • David H, de Boucaud, M-T, Gaultier, J-M, David A (1986) Sustained division of protoplast-derived cells from primary leaves of Pinus pinaster, factors affecting growth and change in nuclear DNA content. Tree Physiol 1:21–30.

    PubMed  CAS  Google Scholar 

  • Dhillon SS (1980) Nuclear volume, chromosome size, and DNA content in three species of Pinus. Cytologia (Tokyo) 45:555–560.

    Article  CAS  Google Scholar 

  • Dhillon SS (1987) DNA in tree species. In: Bonga JM, Durzan DJ (ed) Cell and tissue culture in forestry, vol 1. Nijhoff, Dordrecht, pp 298–313.

    Google Scholar 

  • Dhillon SS (1988) DNA analysis during growth and development. In: Hanover JW, Keathley DE (ed) Genetic manipulation of woody plants. Plenum, New York, pp 265–274.

    Google Scholar 

  • Dhillon SS, Berlyn GP, Miksche JP (1977) Requirement of an internal standard for micro-spectrophotometric measurements of DNA. Am J Bot 64:117–121.

    Article  CAS  Google Scholar 

  • Dhillon SS, Berlyn GP, Miksche JP (1978) Nuclear DNA content in populations of Pinus rigida. Am J Bot 65:192–196.

    Article  CAS  Google Scholar 

  • Dhillon SS, Miksche JP, Cecich, RA (1984) DNA changes in senescing leaves of Populus deltoides. Suppl Plant Physiol (Bethesda) 75:120.

    Google Scholar 

  • Dure L III (1985) Embryogenesis and gene expression during seed formation. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology, vol 2. Oxford Univ. Press New York, pp 179–197.

    Google Scholar 

  • Ecker DJ, Butt TR, Marsh J, Khan MI, Sternberg EJ, Margolis N, Monia BP, Jonnalgadda S, Weber PL (1987) Ubiquitin nature’s most conserved protein as a model for protein engineering. In: Oxender DL (ed) Protein structure, folding and design. Liss, New York, pp 119–130. (DuPont-UCLA Symp Molecular and cellular biology, New Ser, vol 69).

    Google Scholar 

  • El Lakany MH, Sziklai O (1971) Intraspecific variation in nuclear characteristics of Douglas-fir. In: Proc NW Sci Assoc Univ Idaho, Moscow, pp 363-378.

    Google Scholar 

  • El Lakany MH, Sziklai O (1973) Further investigations of intraspecific variation in DNA contents of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. Egypt J Genet Cytol 2:345–354.

    Google Scholar 

  • Federoff NV (1979) On spacers. Cell 16:697–710.

    Article  Google Scholar 

  • Ferguson D, Guikema J, Paulsen G (1988) Ubiquitin-protein conjugation in heat-stressed roots of wheat. Suppl Plant Physiol (Bethesda) 86:49.

    Google Scholar 

  • Flavell (1986) The structure and control of expression of ribosomal RNA genes. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology, vol 3. Oxford Univ. Press, New York, pp 251–274.

    Google Scholar 

  • Franklin CI, Mott RL, Miksche JP (1985) Stability of nuclear DNA content in long-term callus cultures of loblolly pine. In: Henke RR, Hughes KW, Constantin MJ, Hollaender, A (eds) Tissue culture in forestry and agriculture. Plenum., New York, 319 pp.

    Google Scholar 

  • Franklin CI, Mott RL, Vuke TM (1986) Stable ploidy levels in different parts of loblolly pine seedlings and callus cultures. Suppl Plant Physiol (Bethesda) 80:37.

    Google Scholar 

  • Georgiev GP, Kramerov DA, Ryskov AP, Skryabin KG, Lukanidin EM (1983) Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance. Cold Spring Harbor Symp Quant Biol 47:1109–1121.

    PubMed  Google Scholar 

  • Giasson L, Lalonde M (1987) Restriction pattern analysis of deoxyribonucleic acid isolated from callus and cell suspension of actinorhizal and non-actinorhyzal Betulaceae. Physiol Plant 70:304–310.

    Article  CAS  Google Scholar 

  • Gustafsson P, Sitbon F (1986) Studies on genetic differences between pine species by modern DNA technology: the nuclear genome. In: Lindgren D (ed) Provenances and forest tree breeding for high latitudes. Proc Frans Kempe Symp, Swed Univ Agric Sci Dep For Genet Plant Physiol Rep 6, Umea, pp 253–268.

    Google Scholar 

  • Harry DE, Kinlaw CS, Sederoff RR (1988) The anaerobic stress response and its use for studying gene expression in conifers. In: Hanover, JW, Keathley DE (ed) Genetic manipulation of woody plants. Plenum, New York, pp 275–290.

    Google Scholar 

  • Hastie N (1985) Middle repetitive DNA: amplification, homogeneity and mobility. Trends Genet 1:37.

    Article  CAS  Google Scholar 

  • Hotta Y, Miksche JP (1974) Ribosomal genes in four coniferous species. Cell Differ 2:299–305.

    Article  CAS  Google Scholar 

  • Hutchison KW, Singer PB, Greenwood MS (1988) Molecular genetic analysis of development and maturation in larch. In: Cheliak WM, Yapa AC (1988) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2. 04-06. Can For Serv PNFI Inf Rep PI-X-80, pp 26-33.

    Google Scholar 

  • Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite DNA, ribosomal RNA redundancy, and genome size in plants. Plant Physiol (Bethesda) 55:496–501.

    Article  CAS  Google Scholar 

  • Jansson S, Gustafsson P (1988) Cloning of a cDNA encoding the light-harvesting chlorophyll a/b binding protein (CAB) from Scots pine (Pinus sylvestris L.). In: Cheliak WM, Yapa AC (1988) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2.04–06. Can For Serv PNFI Inf Rep PI-X-80, pp 19-25.

    Google Scholar 

  • Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene rad-6 encodes a ubiquitin-conjugating enzyme. Nature (London) 329:131–134.

    Article  CAS  Google Scholar 

  • Kenny JR (1985) Isolation, cloning and sequencing of the actin gene(s) in Pinus contorta var. latifolia (Engelm.). In: Kriebel HB (ed) Molecular genetics of forest trees-research techniques and strategies. Program Abstr 1st Meet IUFRO Working Party S2.04-06, Avon Lake, Ohio, p 5.

    Google Scholar 

  • Kenny J (1988) Partial nucleotide sequence of an entire pine actin gene. In: Hanover JW, Keathley DE (ed) Genetic manipulation of woody plants. Plenum, New York, pp 473.

    Google Scholar 

  • Kinlaw CS, Harry DE, Sleeter DD, Sederoff RR (1988) Use of heterologous probes to isolate and characterize conifer genes. In: Cheliak WM, Yapa AC (eds) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2. 04–06. Can For Serv PNFI Inf Rep PI-X-80, pp 9-18.

    Google Scholar 

  • Kriebel HB (1985) DNA sequence components of the Pinus strobus nuclear genome. Can J For Res 15:1–4.

    Article  CAS  Google Scholar 

  • Kuhlemeier C, Green P, Chua N-H (1987) Regulation of gene expression in higher plants. Annu Rev Plant Physiol 38:221–257.

    Article  CAS  Google Scholar 

  • Lidholm J, Szmidt A, Gustafsson P (1988) Lack of one rDNA repeat and duplication of psbA in the chloroplast genome of lodgepole pine (Pinus contorta) Dougl.). In: Cheliak WM, Yapa AC (eds) Molecular genetics of forest trees. Proc. 2nd Worksh IUFRO Working Party S2.04-06. Can For Serv PNFI Inf Rep PI-X-80, pp 67-74.

    Google Scholar 

  • Lis H, Sharon N (1981) Lectins in higher plants. Biochem Plants 6:371–447.

    CAS  Google Scholar 

  • Long, EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Plant Biochem 49:727–764.

    Article  CAS  Google Scholar 

  • Lonsdale DM (1984) A review of the structure and organization of the mitochondrial genome of higher plants. Plant Mol Biol 3:201–206.

    Article  CAS  Google Scholar 

  • Mergen F, Thielges BA (1967) Intraspecific variation in nuclear volume in four conifers. Evolution 21:720–724.

    Article  Google Scholar 

  • Merkle SA, Chou PL, Sommer HE (1988) Stability of highly repeated sequences in the DNA of embryogenic cultures of yellow poplar. In: Cheliak WM, Yapa AC (eds) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2. 04–06. Can For Serv PNFI Inf Rep PI-X-80, pp 85-88.

    Google Scholar 

  • Miksche JP (1967) Variation in DNA content of several gymnosperms. Can J Genet Cytol 9:717–722.

    Google Scholar 

  • Miksche JP (1968) Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can J Genet Cytol 10:590–600.

    Google Scholar 

  • Miksche JP (1971) Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma 32:343–352.

    CAS  Google Scholar 

  • Miksche JP, Dhillon SS (1981) Nucleic acid research techniques in forest genetics. In: Khosla PK (ed) Advances in forest genetics. Ambika, New Delhi, pp 329–371.

    Google Scholar 

  • Miksche JP, Hotta Y (1973) DNA base composition and repetitious DNA in several conifers. Chromosoma 41:29–36.

    Article  CAS  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:475–502.

    Article  CAS  Google Scholar 

  • Neale DB, Sederoff RR (1988) Inheritance and evolution of conifer organelle genomes. In: Hanover JW, Keathley DE (ed) Genetic manipulation of woody plants. Plenum, New York, pp 251–264.

    Google Scholar 

  • Neale DB, Wheeler NC, Allard RW (1986) Paternal inheritance of chloroplast DNA in Douglas-fir. Can J For Res 16:1152–1154.

    Article  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-I, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature (London) 322:572–574.

    Article  CAS  Google Scholar 

  • Outenreath RL, Roberson MM, Barondes SH (1988) Endogenous lectin secretion into the extracellular matrix of early embryos of Xenopus laevis. Dev Biol 125:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10:823–833.

    Article  CAS  Google Scholar 

  • Pearson WR, Davidson EH, Britten RJ (1977) A program for least squares analysis of reassociation and hybridization data. Nucleic Acids Res 4:1727–1737.

    Article  PubMed  CAS  Google Scholar 

  • Price HJ, Sparrow AH, Nauman AN (1974) Evolutionary and developmental considerations of the variability of nuclear parameters in higher plants. I. Genome volume, interphase chromosome volume, and estimated DNA content of 236 gymnosperms. Brookhaven Symp Biol 25:390–421.

    CAS  Google Scholar 

  • Rake AV, Miksche JP, Hall RB, Hansen KM (1980) DNA reassociation kinetics of four conifers. Can J Genet Cytol 22:69–79.

    CAS  Google Scholar 

  • Renfroe MH, Berlyn GP (1985) Variation in nuclear DNA content in Pinus taeda L. tissue cultures of diploid origin. J Plant Physiol 121:131–139.

    Google Scholar 

  • Rice JB, Baker S, Whitmore FW, Kamalay JC (1988) Isolation of early embryo specific gene sequences from white pine. In: Abstr Present Ohio State Univ Biotechnol Conf, Columbus Abstr 34.

    Google Scholar 

  • Rivin CJ, Zimmer EA, Cullis CA, Walbot V, Huynh, T, Davis RW (1983) Evaluation of genomic variability at the nucleic acid level. Plant Mol Biol Rep 1:9–16.

    Article  CAS  Google Scholar 

  • Schaefer VG, Miksche JP (1977) Microspectrophotometric determination of DNA per cell and polyploidy in Fraxinus americana. Silv Genet 26:184–192.

    CAS  Google Scholar 

  • Sederoff R, Stomp A-M, Gwynn B, Ford E, Loopstra C, Hodgskiss P, Chilton WS (1987) Application of recombinant DNA techniques to pines: a molecular approach to genetic engineering in forestry. In: Bonga JM, Durzan DJ (ed) Cell and tissue culture in forestry, vol 1. Nijhoff, Dordrecht, pp 314–329.

    Google Scholar 

  • Sharp PM, Li W-H (1987) Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J Mol Evol 25:58–64.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugura M (1986) The complete nucleotide sequence of tobacco chloroplast genome: its organization and expression. EMBO J 5:2043–2049.

    PubMed  CAS  Google Scholar 

  • Sitbon F, Gustafsson P (1988) Cloning and characterization of a highly conserved, Pinaceae-specific chloroplast DNA component from Scots pine (Pinus sylvestris L.). In: Cheliak WM, Yapa AC (eds) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2.04–06. Can for Serv PNFI Inf Rep PI-X-80, pp 41-48.

    Google Scholar 

  • Stine M, Keathley DE (1988) Evidence for paternal inheritance of plastids in interspecific hybrids of Picea. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, p 486.

    Google Scholar 

  • Strauss SH, Tsai C-H (1988) Genetic polymorphism for nuclear ribosomal gene number in Douglasfir (Pseudotsuga menziesii [Mirb.] Franco). In: Cheliak WM, Yapa AC (1988) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2.04–06. Can For Serv PNFI Inf Rep PI-X-= 80, pp 79-84.

    Google Scholar 

  • Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA 85:3892–3902.

    Article  Google Scholar 

  • Szmidt AE, Lidholm J, Hallgren J-E (1986) DNA extraction and preliminary characterization of chloroplast DNA from Pinus sylvestris and Pinus contorta. In: Lindgren D (ed) Provenances and forest tree breeding for high latitudes. Proc Frans Kempe Symp, Swed Univ Agric Sci Dep For Genet Plant Physiol Rep 6, Umea, pp 269–280.

    Google Scholar 

  • Szmidt AE, Alden T, Hallgren J-E (1987) Paternal inheritance of chloroplast DNA in Larix. Plant Mol Biol 9:59–64.

    Article  CAS  Google Scholar 

  • Teoh SB, Rees H (1976) Nuclear DNA amounts in populations of Picea and Pinus species. Heredity 36:123–137.

    Article  Google Scholar 

  • Thompson WF, Murray MG (1981) The nuclear genome: structure and function. In: Stumpf PK, Conn EE (ed) The biochemistry of plants, vol 6. Academic Press, New York London, pp 1–81.

    Google Scholar 

  • Vierstra RD (1987) Ubiquitin a key component in the degradation of plant proteins. Physiol Plant 70:103–106.

    Article  CAS  Google Scholar 

  • Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100.

    Article  PubMed  CAS  Google Scholar 

  • Wagner DB, Govindaraju DR, Dancik BP (1988) Chloroplast DNA polymorphism in a sympatric region. In: Cheliak WM, Yapa AC (eds) Molecular genetics of forest trees. Proc 2nd Worksh IUFRO Working Party S2. 04.06. Can For Serv PNFI Inf Rep PI-X-80, pp 75-78.

    Google Scholar 

  • Westcott R (1988) Difference in the methylation of DNA extracted from trees of Norway spruce (Picea abies) of different ages. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, 493 pp.

    Google Scholar 

  • Whitfield PR, Bottomley W (1983) Organization and structure of chloroplast genes. Annu Rev Plant Physiol 34:279–310.

    Article  Google Scholar 

  • Whitmore FW, Kriebel HB (1987) Expression of a gene in Pinus strobus ovules associated with fertilization and early embryo development. Can J For Res 17:408–412.

    Article  Google Scholar 

  • Williamson RE (1980) Actin in motile and other processes in plant cells. Can J Bot 58:766–772.

    Article  CAS  Google Scholar 

  • Yamamoto N (1982) Preformed mRNA and light-induced germination of pine (Pinus thunbergii) seed. Plant Cell Physiol 23:865–869.

    CAS  Google Scholar 

  • Yamamoto N, Mukai Y, Matsuoka M, Ohashi Y, Kano-Murakami Y, Tanaka Y, Ozeki Y (1988) Expression of rbcS and cab genes in both dark and light conditions in pine (Pinus thunbergii) seedlings. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, 494 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kriebel, H.B. (1993). Molecular Structure of Forest Trees. In: Ahuja, MR., Libby, W.J. (eds) Clonal Forestry I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84175-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84175-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84177-4

  • Online ISBN: 978-3-642-84175-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics