

Electronic Properties of Conjugated Polymers

Proceedings of an International Winter School, Kirchberg, Tirol, March 14–21, 1987

Editors: H. Kuzmany, M. Mehring, and S. Roth

With 265 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Professor Dr. Hans Kuzmany

Institut für Festkörperphysik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria and Ludwig Boltzmann Institut für Festkörperphysik, Wien, Kopernikusgasse 15, A-1090 Wien, Austria

Professor Dr. Michael Mehring

Physikalisches Institut II, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80, Fed. Rep. of Germany

Dr. Siegmar Roth

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, Fed. Rep. of Germany

Series Editors:

Professor Dr., Dres. h. c. Manuel Cardona Professor Dr., Dr. h. c. Peter Fulde Professor Dr. Klaus von Klitzing Professor Dr. Hans-Joachim Queisser

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1 D-7000 Stuttgart 80, Fed. Rep. of Germany

ISBN-13: 978-3-642-83286-4 e-ISBN-13: 978-3-642-83284-0 DOI: 10.1007/978-3-642-83284-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1987

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printing: Druckhaus Beltz, 6944 Hemsbach/Bergstr. Binding: J. Schäffer GmbH & Co. KG., 6718 Grünstadt 2153/3150-543210

Preface

The International Winter School on Electronic Properties of Conjugated Polymers held March 14–21, 1987, in Kirchberg (Austria) was a sequel to a meeting held in Kirchberg two years before on a similar subject. The 1987 winter school was organized in cooperation with the "Bundesministerium für Wissenschaft und Forschung" in Austria and the "Bundesministerium für Forschung und Technologie" in the Federal Republic of Germany. The basic idea of the meeting was to provide an opportunity for experienced scientists from universities and industry to discuss their most recent results and for students and young scientists to inform themselves about the present state of the research in this field.

As in 1985, the scientific interest was concentrated on the electronic structure of various conjugated polymers and related compounds. The focus of interest in the field now appears to have broadened and covers not only conductivity and relaxation phenomena of polyacetylene but also nonlinear optical properties, highly oriented and single-crystal polymers, and electrochemical and opto-electrochemical properties of special materials such as polypyrrole and polyaniline. Exciting results on conductivity – the mass specific conductivity (i.e., the conductivity divided by the density) of polyacetylene is more than twice that of copper (!) – and a detailed interpretation of the meaning of conjugation length are reported. In spite of the high degree of orientation in several polymers, the mechanism for the conductivity was confirmed to be similar to the mechanism in amorphous systems. Theoretical and experimental results have proved the importance of electron-electron correlation. Possible applications such as electrochemical cells, electrode materials, processable conducting polymers, nonlinear optics devices, etc., are presented and now appear to be much more realistic than in previous reports.

Discussion meetings were devoted to the conduction mechanism and possible limitations of the conductivity of conjugated polymers in general, and to the physical and chemical properties of polyaniline. In addition, a spontaneous meeting on the new high T_c oxidic superconductors and their relation to the conjugated polymers was held. This book summarizes the tutorial and research papers presented at the winter school. We thank all the authors for their contributions and all the discussion speakers at the winter school for their stimulating remarks, which played an essential role in making the winter school an exciting and informative event.

We acknowledge in particular the "Bundesministerium für Wissenschaft und Forschung" (Austria) and the "Bundesministerium für Forschung und Technologie" (FRG), as well as the sponsors from industry, for their financial support. This support was not only a great help but was, in fact, indispensable for the goal of the meeting to be attained.

Finally, we thank the manager of the Hotel Sonnalp, Herr J.R. Jurgeith, for his continuous support and for his patience with the many special arrangements required during the meeting.

Wien, Stuttgart June, 1987 H. Kuzmany M. Mehring S. Roth

Contents

Part I Conductivity

Electronic Transport in Low-Conductivity Metals and Comparison with Highly Conducting Polymers By A.B. Kaiser (With 8 Figures)	2
Synthesis of New Conductive Electronic Polymers By H. Naarmann (With 4 Figures)	12
Long Mean Free Path Coherent Transport in Doped Polyacetylene By N. Basescu, ZX. Liu, D. Moses, A.J. Heeger, H. Naarmann, and N. Theophilou (With 2 Figures)	18
Frequency- and Temperature-Dependent Dielectric Losses in Lightly Doped Conducting Polymers By J.P. Parneix and M. El Kadiri (With 4 Figures)	23
Variable-Range Hopping in Polymers Prepared from Iodo-(2-nitrophenyl)-acetylene By M. Rotti, H. Krikor, and P. Nagels (With 6 Figures)	27
Transport Studies on Polypyrrole Films Prepared from Aqueous TsONa Solutions of Different Concentrations By Shen Yueqiang, K. Carneiro, Wang Ping, and Qian Renyuan	
(With 2 Figures)	31

Part II Defects and Conjugation Length

Influence of the Conjugation Length of Polyacetylene Chains on	
the DC-Conductivity. By D. Schäfer-Siebert, C. Budrowski,	
H. Kuzmany, and S. Roth (With 6 Figures)	38
Conjugation Length and Localization in Conjugated Polymers	
By J. Kürti and H. Kuzmany (With 4 Figures)	43

Theoretical Investigations of Segmented Polyacetylene By J.L. Brédas, J.M. Toussaint, G. Hennico, J. Delhalle, J.M. André, A.J. Epstein, and A.G. MacDiarmid (With 3 Figures)	48
Analysis of the Raman Spectra of Modified trans- $(CH)_x$ By S. Lefrant, G. Arbuckle, E. Faulques, E. Perrin, A. Pron, and E. Mulazzi (With 1 Figure)	54
Conformation of Conjugated Polymers and Their Relation to Electron Delocalisation By J.P. Aimé, M. Rawiso, and M. Schott (With 3 Figures)	58
Polyacetylene Segments in a Polyvinylidene-Chloride Matrix: Anisotropic Optical Properties. By G. Leising, B. Ankele, H. Kahlert, and P. Knoll (With 3 Figures)	64

Part III Electron Energy Loss, Optical and Raman Spectroscopy

Electronic Structure of Conducting Polymers by Electron Energy- Loss Spectroscopy By J. Fink, N. Nücker, B. Scheerer, W. Czerwinski, A. Litzelmann, and A. vom Felde (With 11 Figures)	70
Electronic Structure of Undoped and Doped Polyphenylenevinylene. By J. Fink, N. Nücker, B. Scheerer, A. vom Felde, H. Lindenberger, and S. Roth (With 8 Figures)	79
Electronic Structure of Doped Highly Oriented Polyacetylene By J. Fink, N. Nücker, B. Scheerer, A. vom Felde, and G. Leising (With 3 Figures)	84
Polarization Dependence of Recombination Kinetics in Stretch- Oriented <i>trans</i> -Polyacetylene By H. Bleier, S. Roth, and G. Leising (With 3 Figures)	88
Photogeneration Mechanism and Mobility in Polydiacetylene By D. Moses, M. Sinclair, and A.J. Heeger (With 2 Figures)	95
Polarised Photoexcitation in Oriented Polyacetylene By P.D. Townsend and R.H. Friend (With 4 Figures)	101
Radiative and Non-radiative Recombination Processes in Photoexcited Poly(p-phenylene vinylene) By D.D.C. Bradley, R.H. Friend, K.S. Wong, W. Hayes, H. Lindenberger, and S. Roth (With 3 Figures)	107
Photoinduced Absorption in Poly(<i>p</i> -phenylene vinylene) By D.D.C. Bradley, R.H. Friend, F.L. Pratt, K.S. Wong, W. Hayes, H. Lindenberger, and S. Roth (With 2 Figures)	113

Spectroscopy of Photo-Induced Solitons in <i>cis</i> -rich and <i>trans</i> -Polyacetylene By N. Colaneri, R.H. Friend, H.E. Schaffer, and A.J. Heeger (With 3 Figures)	118
Photoinduced Infrared Absorption in Polydiacetylene By F.L. Pratt, K.S. Wong, W. Hayes, and D. Bloor (With 3 Figures)	124
Towards Solid State Investigations on Polyacetylene By G. Leising and M. Filzmoser (With 4 Figures)	128
Raman Scattering of Highly Oriented Polyacetylene By P. Knoll, H. Kuzmany, and G. Leising (With 6 Figures)	134
Experimental Raman Investigation of Oriented Undoped and Iodine Doped Polyacetylene By S. Lefrant and E. Mulazzi (With 3 Figures)	141
Polarization Properties of the Raman Spectra in <i>trans</i> - and <i>cis</i> -Polyacetylene By S. Fuso, C. Cuniberti, G. Dellepiane, S. Luzzati, and R. Tubino (With 5 Figures)	146
Interpretation of the Raman Spectra of <i>n</i> -doped $trans-(CH)_x$ Films. By E. Mulazzi and S. Lefrant (With 3 Figures)	150

Part IV Magnetic Resonance

Pulsed ENDOR and TRIPLE Resonance on <i>trans</i> -Polyacetylene à la Durham Route	
By A. Grupp, P. Höfer, H. Käss, M. Mehring, R. Weizenhöfer, and G. Wegner (With 2 Figures)	156
ESR Study of Metallic Complexes of Alkali-Doped Polyacetylene By F. Rachdi and P. Bernier (With 2 Figures)	160
In situ ESR Study During the Electrochemical Intercalation of Potassium in Polyacetylene By C. Fite and P. Bernier (With 1 Figure)	165
⁷ Li NMR Study of the Electrochemical Doping of Poly(acetylene) By A.K. Whittaker, C. Fite, K. Zniber, and P. Bernier (With 3 Figures)	170
p_z -Radical Electron Structure in Polydiacetylene (PDA) Molecules By H. Sixl and C. Kollmar (With 6 Figures)	175
Triplet State ODMR of Polydiacetylene Crystals By W. Rühle and H. Sixl (With 6 Figures)	180
	IX

Part V Theory

Electronic and Nonlinear Optical Properties of Conjugated Polymers: A Quantum Chemistry Approach By J.L. Brédas (With 2 Figures)	186
On the Role of the Coulomb Interaction in Conjugated Polymer By D. Baeriswyl	198
Lattice Relaxation Approach to Soliton and Polaron Dynamics in Conducting Polymers. By Su Zhao-bin and Yu Lu (With 1 Figure)	20.4
(With 1 Figure)	204

Part VI Polyaniline

Photoelectrochemistry of Polyaniline By Mei Xiang Wan, A.G. MacDiarmid, and A.J. Epstein (With 4 Figures)	216
Redox Mechanisms in Polyaniline Films By E.M. Geniès and M. Lapkowski (With 4 Figures)	223
In situ FTIR Spectroscopy of Polyaniline By N.S. Sariciftci, H. Neugebauer, H. Kuzmany, and A. Neckel (With 2 Figures)	228
Spectroscopic Investigation of Polyaniline By A.P. Monkman and D. Bloor (With 2 Figures)	232
In situ Ellipsometry of Early Steps of Polyaniline Electrosynthesis By B. Grodzicka, K. Brudzewski, R. Minkowski, J. Plocharski, and J. Przyluski (With 2 Figures)	235
Electronic Properties of Polyaniline By S. Stafström (With 3 Figures)	238
On the Acidic Functions of Polyaniline By C. Menardo, F. Genoud, M. Nechtschein, J.P. Travers, and P. Hani (With 2 Figures)	244
Thermochromism and Acidochromism in Substituted Polyanilines By Ph. Snauwaert, R. Lazzaroni, J. Riga, and J.J. Verbist (With 3 Figures)	249
Spectroscopic Studies of some Model Molecules for Polyaniline By W.R. Salaneck, C.R. Wu, S. Stafström, M. Lindgren, T. Hjertberg, O. Wennerström, M. Sandberg, C.B. Duke,	050
E. Conwell, and A. Paton (With 3 Figures)	253

ESCA Studies of Polyaniline and Polypyrrole By H.S. Munro, D. Parker, and J.G. Eaves (With 2 Figures)	257
Mass Spectroscopy of Chemical Processes in Conducting Polymers: Polyaniline. By K. Uvdal, M.A. Hasan, J.O. Nilsson, W.R. Salaneck, I. Lundström, A.G. MacDiarmid, A. Ray, and M. Angelopoulos (With 3 Figures)	262
Synthesis and Properties of a Conducting Polymer Derived from Diphenylamine. By E. Pater, M. Samoc, R. Zuzok, and P. Drozdzewski (With 3 Figures)	266
Part VII Polypyrrole, Polythiophene and Polyparaphenylene	
On Polaron and Bipolaron Formation in Conducting Polymers By F. Devreux, F. Genoud, M. Nechtschein, and B. Villeret (With 3 Figures)	270
ESR of BF ⁻ ₄ -Doped Poly(3-methylthiophene) By M. Schärli, H. Kiess, G. Harbeke, W. Berlinger, K.W. Blazey, and K.A. Müller (With 3 Figures)	277
Influence of the Monomer Size on the Electronic Structure of Thiophene-Like Polymers By R. Lazzaroni, R. Sporken, J. Riga, J.J. Verbist, J.L. Brédas, R. Zamboni, and C. Taliani (With 3 Figures)	281
Ion Implantation of Polythiophene By H. Isotalo, H. Stubb, and J. Saarilahti (With 4 Figures)	285
Characterization of Polypyrrole-Polyvinyl Alcohol Composite Prepared by Chemical Oxidation of Pyrrole By A. Pron and K. Wojnar	291
Electrochemistry of Polypyrrole-Ferrocyanide Films By M. Zagórska (With 3 Figures)	294
Synthesis and Physical Properties of 3,4-Disubstituted Polypyrroles. By J. Rühe, Ch. Kröhnke, T. Ezquerra, and G. Wegner (With 4 Figures)	298
A New Polyparaphenylene Thin Film Obtained by Electroreduction: Characterization and Electrochemical Studies By G. Froyer, Y. Pelous, and G. Ollivier (With 5 Figures)	302

Part VIII Special Materials

Control of the State of Order in Poly(<i>p</i> -phenylene vinylene) and Its Effect on Iodine Doping By D.D.C. Bradley, T. Hartmann, R.H. Friend, E.A. Marseglia,	
H. Lindenberger, and S. Roth (With 3 Figures)	308
Electronic Excitations in Polysilanes By P.R. Surjan, R.A. Poirier, and H. Kuzmany (With 1 Figure) .	314
Doping Experiments with μ -(Pyrazine)phthalocyaninatoiron(II) By M. Hanack and A. Leverenz (With 1 Figure)	318
Optical and Electrical Properties of a New Conductive Polyheterocycle: Poly(1,4-di(2-thienyl))benzene By C. Taliani, R. Danieli, R. Zamboni, G. Ruani, and P. Ostoja (With 4 Figures)	322
Preparation, Spectroscopic and Electrical Characterization of a New Polyheterocycle: Poly-benzo $(1,2-b;4, 3-b')$ dithiophene By C. Taliani, R. Danieli, R. Zamboni, G. Giro, and F. Sannicolò (With 4 Figures)	326
Investigation of Undoped and Alkali-Metal Doped Poly(<i>p</i> -phenylene Selenide) By W. Czerwiński, J. Fink, and N. Nücker (With 5 Figures)	330
Structural Characterization of Polymers Prepared from Iodophenylacetylene by Heating at Different Temperatures By M. Rotti, H. Krikor, and P. Nagels (With 2 Figures)	334
Metallic Coordination Polymers Using CS ₂ as Starting Material By H.J. Keller, T. Klutz, H. Münstedt, G. Renner, and D. Schweitzer (With 4 Figures)	338
(QP) ₄ (SbF ₆) ₃ : A Model Compound for Doped Polymers? By W. Grauf, J.U. von Schütz, H.P. Werner, H.C. Wolf, K. Göckelmann, V. Enkelmann, and G. Wegner (With 2 Figures)	341
	011

Part IX Related Topics

Supermolecular Structures Based on Langmuir-Blodgett Films By M.C. Petty (With 3 Figures)	346
Preparation and Structure of Langmuir-Blodgett Films of Polymers. By C. Bubeck (With 1 Figure)	351
BEDT-TTF Radical Salts: Organic Metals and Superconductors By D. Schweitzer (With 10 Figures)	354

Electrical Conducting Molecular Crystals in a Polymer Matrix	
By G. Heywang (With 1 Figure)	363

Part X Applications

Grafting, Ionomer Composites, and Auto-doping of Conductive Polymers. By P. Audebert, G. Bidan, M. Lapkowski, and D. Limosin (With 6 Figures)	366
On the Charge Storage Mechanism of Conducting Polymers By J. Heinze, J. Mortensen, and M. Störzbach (With 3 Figures) .	385
Electrochemical Investigations and Neutron Activation Analysis of Polyacetylene By G. Nagele, G.E. Nauer, and H. Kuzmany (With 1 Figure)	391
Low Frequency Impedance Measurements on Polypyrrole By J. Tanguy and M. Slama (With 5 Figures)	396
Poly(alkyl thiophenes) and Poly(substituted heteroaromatic vinylenes): Versatile, Highly Conductive, Processible Polymers with Tunable Properties By R.L. Elsenbaumer, Kwan-Yue Jen, G.G. Miller, H. Eckhardt, L.W. Shacklette, and R. Jow (With 2 Figures)	400
Electrical Conductivity in Heterogeneous Polymer Systems By B. Wessling (With 5 Figures)	407
Organic and Polymeric Non-linear Optical Materials: Properties and Applications. By D. Bloor (With 2 Figures)	413
Preparation of Conducting Polymers by UHV-Compatible Methods. By W.R. Salaneck, I. Lundström, A. Mohammadi, S. Akbar, and A. Platau	419
Organic Semiconducting Polymers for New Electronic Devices By F. Garnier and G. Horowitz (With 4 Figures)	423
Polymer-Based Conducting Material Used for Water Vapour Detection in Air By J.P. Lukaszewicz and J. Siedlewski (With 4 Figures)	428
A Novel Application of Conducting Polymers: Remotely Readable Indicator Devices. By R.H. Baughman, R.L. Elsenbaumer, Z. Iqbal, G.G. Miller, and H. Eckhardt (With 2 Figures)	432
Index of Contributors	441