Springer Series in Surface Sciences

Editor: Robert Gomer

Springer Berlin

Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Springer Series in Surface Sciences

Editors: G. Ertl, R. Gomer and D. L. Mills

Physisorption Kinetics
 By H. J. Kreuzer, Z. W. Gortel

2 The Structure of Surfaces Editors: M. A. Van Hove, S. Y. Tong

3 Dynamical Phenomena at Surfaces, Interfaces and Superlattices Editors: F. Nizzoli, K.-H. Rieder, R. F. Willis

4 Desorption Induced by Electronic Transitions, DIET II

Editors: W. Brenig, D. Menzel

5 Chemistry and Physics of Solid Surfaces VI Editors: R. Vanselow, R. Howe

6 Low-Energy Electron Diffraction
Experiment, Theory
and Surface Structure Determination
By M. A. Van Hove, W. H. Weinberg, C.-M. Chan

7 Electronic Phenomena in Adsorption and Catalysis By V. F. Kiselev, O. V. Krylov

8 Kinetics of Interface Reactions Editors: M. Grunze, H. J. Kreuzer

9 Adsorption and Catalysis on Transition Metals and Their Oxides By V. F. Kiselev, O. V. Krylov

10 Chemistry and Physics of Solid Surfaces VII Editors: R. Vanselow, R. Howe

11 The Structure of Surfaces II Editors: J. F. van der Veen, M. A. Van Hove

12 Diffusion at Interfaces: Microscopic Concepts Editors: M. Grunze, H. J. Kreuzer, J. J. Weimer

13 Desorption Induced by Electronic Transitions, DIET III

Editors: R. H. Stulen, M. L. Knotek

14 Solvay Conference on Surface Science Editor: F. W. de Wette

15 Surfaces and Interfaces of Solids By H. Lüth*)

16 Atomic and Electronic Structure of Surfaces Theoretical Foundations By M. Lannoo, P. Friedel

17 Adhesion and Friction Editors: M. Grunze, H. J. Kreuzer

18 Auger Spectroscopy and Electronic Structure Editors: G. Cubiotti, G. Mondio, K. Wandelt

19 Desorption Induced by Electronic Transitions, DIET IV

Editors: G. Betz, P. Varga

20 Scanning Tunneling Microscopy I General Principles and Applications to Clean and Adsorbate-Covered Surfaces Editors: H.-J. Güntherodt, R. Wiesendanger

Managing Editor: H.K.V. Lotsch

21 Surface Phonons Editors; W. Kress, F. W. de Wette

2nd Edition

22 Chemistry and Physics of Solid Surfaces VIII Editors: R. Vanselow, R. Howe

23 Surface Analysis Methods in Materials Science Editors: D. J. O'Connor, B. A. Sexton, R. St. C. Smart

24 The Structure of Surfaces III Editors: S. Y. Tong, M. A. Van Hove, K. Takayanagi, X. D. Xie

25 NEXAFS Spectroscopy By J. Stöhr

26 Semiconductor Surfaces and Interfaces By W. Mönch 2nd Edition

27 Helium Atom Scattering from Surfaces Editor: E. Hulpke

28 Scanning Tunneling Microscopy II
Further Applications
and Related Scanning Techniques
Editors: R. Wiesendanger, H.-J. Güntherodt
2nd Edition

29 Scanning Tunneling Microscopy III
Theory of STM
and Related Scanning Probe Methods
Editors: R. Wiesendanger, H.-J. Güntherodt
2nd Edition

30 Concepts in Surface Physics By M. C. Desjonquères, D. Spanjaard*)

31 Desorption Induced by Electronic Transitions, DIET V

Editors: A. R. Burns, E. B. Stechel, D. R. Jennison

32 Scanning Tunneling Microscopy and its Application By C. Bai

33 Adsorption on Ordered Surfaces of Ionic Solids and Thin Films Editors: H.-J. Freund, E. Umbach

34 Surface Reactions Editor: R. J. Madix

35 Applications of Synchrotron Radiation High-Resolution Studies of Molecules and Molecular Adsorbates on Surfaces Editor: W. Eberhardt

*) Available as a textbook

R. Wiesendanger H.-J. Güntherodt (Eds.)

Scanning Tunneling Microscopy III

Theory of STM and Related Scanning Probe Methods

Second Edition
With 212 Figures

Professor Dr. Roland Wiesendanger

Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany

Professor Dr. Hans-Joachim Güntherodt

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

Series Editors

Professor Dr. Gerhard Ertl

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

Professor Robert Gomer, Ph.D.

The James Franck Institute, The University of Chicago, 5640 Ellis Avenue, Chicago, IL 60637, USA

Professor Douglas L. Mills, Ph.D.

Department of Physics, University of California, Irvine, CA 92717, USA

Managing Editor: Dr.-Ing. Helmut K.V. Lotsch

Springer-Verlag, Tiergartenstrasse 17, D-69121 Heidelberg, Germany

```
Scanning tunneling microscopy III: theory of STM and related scanning probe methods / R. Wiesendanger, H.-J. Güntherodt (eds.). -- 2nd ed. p. cm. -- (Springer series in surface sciences; 29) Includes bibliographical references and index. ISBN-13:978-3-540-60824-0

1. Scanning tunneling microscopy. 2. Scanning probe microscopy.
```

Library of Congress Cataloging-in-Publication Data

I. Wiesendanger, R. (Roland), 1961- . II. Güntherodt, H.-J. (Hans-Joachim), 1939- III. Series. QH212.S35S267 1996

502'.8'2--dc20

96-21459

ISBN-13:978-3-540-60824-0 e-ISBN-13:978-3-642-80118-1

DOI: 10.1007/978-3-642-80118-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993, 1996

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Macmillan India Ltd., India and PSTM Technical Processor SPIN: 10481680 54/3144 - 5 4 3 2 1 0 - Printed on acid-free paper

Preface to the Second Edition

When the first edition of Scanning Tunneling Microscopy III appeared, a gap in the literature on scanning probe methods (SPM) was filled because this book offered the first comprehensive overview of the theoretical background and concepts important for understanding image contrast formation and spectroscopic data. As a consequence, the first edition soon sold out and this second edition with an updating chapter, including the most recent developments in the theory on SPM, was prepared. The editors would like to thank all contributors who supplied material for the additional chapter, and those who have provided us with suggestions for further improvements. We also thank Springer-Verlag for the decision to publish this second edition in paperback, thereby making this book affordable for an even wider circle of readers.

Hamburg, January 1996

R. Wiesendanger

Preface to the First Edition

While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on introducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real-space images of surface structures by STM/SXM.

After a brief introduction (Chap. 1), N.D. Lang first concentrates on theoretical concepts developed for understanding the STM image contrast for single-atom adsorbates on metals (Chap. 2). A scattering-theoretical approach to the STM is described by G. Doyen (Chap. 3). In Chap. 4, C. Noguera concentrates on the spectroscopic information obtained by STM, whereas the role of the tip atomic and electronic structure in STM/STS is examined more closely by M. Tsukada et al. in Chap. 5. The tunneling time problem is still of great topical interest, not only in conjunction with STM, and will therefore be focused on in a separate Chap. 6 by C.R. Leavens and G.C. Aers. A unified perturbation theory for STM and SFM is described by C.J. Chen in Chap. 7. The important issue of tip-sample interaction in STM and related SXM methods is addressed in two separate chapters (Chap. 8 by S. Ciraci and Chap. 9 by U. Landman). Chapter 10 by G. Overney is devoted to contact-force microscopy on elastic media, whereas theoretical concepts of atomic scale friction are described by D. Tománek (Chap. 11). Finally, U. Hartmann concentrates on the theory of non-contact force microscopy (Chap. 12).

We would like to thank all the contributors who have contributed to this third volume on STM, as well as Springer-Verlag for the continuous pleasant collaboration. Hopefully, this third volume on the theory of STM/SXM will help many experimentalists to better understand their data, and will stimulate even more theorists to concentrate on still unsolved issues in the exciting and challenging field of STM and related scanning probe methods.

Contents

1.	Introduction	
	By R. Wiesendanger and HJ. Güntherodt	1
	1.1 Theoretical Concepts for Scanning Tunneling Microscopy	2
	1.2 Theoretical Concepts for Force Microscopy	3
	References	5
2.	STM Imaging of Single-Atom Adsorbates on Metals	
	By N.D. Lang (With 15 Figures)	7
	2.1 Tunneling Hamiltonian Approach	8
	2.2 Adsorbates on Metal Surfaces	g
	2.2.1 Topography	10
	2.2.2 Spectroscopy	14
	2.2.3 Voltage Dependence of Images – Apparent Size	
	of an Adatom	15
	2.3 Close Approach of the Tip: The Strong-Coupling Regime	17
	2.3.1 From Tunneling to Point Contact	17
	2.3.2 Measuring the Tunneling Barrier	19
	References	21
3.	The Scattering Theoretical Approach	
	to the Scanning Tunneling Microscope	
	By G. Doyen (With 16 Figures)	23
	3.1 The Theoretical Formalism	24
	3.1.1 The Limits of Perturbation Theory	24
	3.1.2 Tunneling as a Scattering Process	26
	3.1.3 Current Density	
	and Generalized Ehrenfest Theorem	29
	3.1.4 Local Charge Density at the Fermi Level	
	and Tunnel Current	31
	3.1.5 Resonance Tunneling	33
	3.2 Tunneling Through Thick Organic Layers	35
	3.2.1 The Experimental Situation	35
	3.2.2 A Simple Soluble Model	36
	3.3 Scanning Tunneling Microscopy at Metal Surface	38
	3.3.1 A Method Based on the Korringa-Kohn-Rostocker	
	(KKR) Band Theory	30

	3.3.2 Including the Atomic Structure of the Tip:	
	Model Hamiltonian Approach	39
	3.3.3 Close Packed Metal Surface	41
	3.3.4 Open Metal Surfaces	46
	3.3.5 Imaging Adsorbed Alkali Atoms: K/Cu(110)	48
	3.4 Summary and Conclusions	48
	References.	49
4	Spectroscopic Information in Scanning Tunneling Microscopy	
7.	By C. Noguera (With 8 Figures)	51
	4.1 Green's Function Method	52
	4.1.1 Matching at a Single Surface	52
	4.1.2 Matching at Two Surfaces	56
	4.2 Derivation of the Transfer Hamiltonian Approach	57
	4.2.1 The Transfer Hamiltonian Approach	58
	4.2.2 Tersoff and Hamann's Theory	58
	4.2.3 New Derivation of the Transfer Hamiltonian	
	Approach	59
	4.2.4 Validity of the Transfer Hamiltonian Approach	61
	4.3 One-Dimensional Models	62
	4.3.1 Free Electron Model with a Square Barrier	62
	4.3.2 One-Dimensional Array of Square Well Potentials	63
	4.3.3 The Question of the Surface States	64
	4.3.4 Resonant States in the Barrier	65
	4.4 Three-Dimensional Models	68
	4.4.1 Formalism for a Spherical Tip	69
	4.4.2 Application to an Adsorbate on a Surface	72
	4.5 Conclusion	74
	References	75
5.	. The Role of Tip Atomic and Electronic Structure	
	in Scanning Tunneling Microscopy and Spectroscopy	
	By M. Tsukada, K. Kobayashi, N. Isshiki, S. Watanabe,	
	H. Kageshima, and T. Schimizu (With 20 Figures)	77
	5.1 Background	77
	5.2 Formalism of Theoretical Simulation of STM/STS	79
	5.3 Simulation of STM/STS of the Graphite Surface	81
	5.3.1 Normal Images	81
	5.3.2 Abnormal Images	82
	5.3.3 Effect of the Atom Kind of the Tip	
	and the Tunnel Current Distribution	84
	5.4 STM/STS of Si(100) Reconstructed Surfaces	8.5
	5.5 The Negative-Differential Resistance	
	Observed on the Si(111), $\sqrt{3} \times \sqrt{3}$ -B Surface	91

		Contents	IX
	5.6 The STM Image of the Si(111) $\sqrt{3} \times \sqrt{3}$ -Ag Surface		
	and the Effect of the Tip		95
	5.7 Light Emission from a Scanning Tunneling Microscope		98
	5.8 Summary and Future Problems		101
	Note Added in Proof		101
	References		102
	References		102
6.	Bohm Trajectories and the Tunneling Time Problem		
	By C.R. Leavens and G.C. Aers (With 21 Figures)		105
	6.1 Background		105
	6.1.1 Motivation		105
	6.1.2 Defining the Problem		106
	6.2 A Brief Discussion of Previous Approaches		107
	6.3 Bohm's Trajectory Interpretation of Quantum Mechani		110
	6.3.1 A Brief Introduction		110
	6.3.2 Transmission and Reflection Times		
	Within Bohm's Interpretation		111
	6.4 Application to Simple Systems		114
	6.4.1 Some Numerical Details		114
	6.4.2 Reflection Times for an Infinite Barrier		115
	6.4.3 Transmission and Reflection Times		
	for Rectangular Barriers		116
	6.4.4 Coherent Two-Component Incident Wave Packet		121
	6.4.5 Transmission Times for Time-Modulated Barriers		123
	6.4.6 Transmission Times for Symmetric Double		
	Rectangular Barriers		129
	6.5 Discussion		132
	6.5.1 'Measurement' of Particle Momentum		132
	6.5.2 'Measurement' of Mean Transmission		
	and Reflection Times		136
	6.5.3 Concluding Remarks		137
	References		138
	Additional References with Titles		140
7.	Unified Perturbation Theory for STM and SFM		
	By C.J. Chen (With 16 Figures)		141
	7.1 Background		141
	7.1.1 A Brief Summary of Experimental Facts		141
	7.1.2 The Bardeen Approach for Tunneling Phenomena	ı	143
	7.1.3 Perturbation Approach for STM and SFM		145
	7.2 The Modified Bardeen Approach		147
	7.2.1 General Derivation		147
	7.2.2 The Square-Barrier Problem		151
	7.2.3 The Hydrogen Molecular Ion		152
	7.2.4 The Tunneling Time		157

	7.2.5 Asymptotic Accuracy	
	of the Bardeen Tunneling Theory	158
	7.2.6 Tunneling Conductance	
	and Attractive Atomic Force	158
	7.3 Explicit Expressions for Tunneling Matrix Elements	159
	7.4 Theoretical STM Images	162
	7.4.1 The Method of Leading Bloch Waves	163
	7.4.2 The Method of Independent Atomic Orbitals	165
	7.5 Effect of Atomic Forces in STM Imaging	169
	7.5.1 Stability of STM at Short Distances	169
	7.5.2 Effect of Force in Tunneling Barrier Measurements	170
	7.6 In-Situ Characterization of Tip Electronic Structure	172
	7.7 Summary	174
	7.8 Appendix: Modified Bardeen Integral	177
	for the Hydrogen Molecular Ion	174
	References	177
	References	1//
8.	Theory of Tip-Sample Interactions	
0.	By S. Ciraci (With 10 Figures)	179
	8.1 Tip–Sample Interaction	179
	8.2 Long-Range (Van der Waals) Forces	183
	8.3 Interaction Energy: Adhesion	185
	8.4 Short-Range Forces	186
	8.5 Deformations	188
	8.6 Atom Transfer	190
	8.7 Tip-Induced Modifications of Electronic Structure	192
	8.8 Calculation of Current at Small Separation	194
	8.9 Constriction Effect	197
	8.10 Transition from Tunneling to Ballistic Transport	198
	8.11 Tip Force and Conductivity	201
	8.12 Summary	204
	References	205
	References.	200
9.	Consequences of Tip-Sample Interactions	
	By U. Landman and W.D. Luedtke (With 29 Figures)	207
	9.1 Methodology	210
	9.2 Case Studies	212
	9.2.1 Clean Nickel Tip/Gold Surface	214
	9.2.2 Gold-Covered Nickel Tip/Gold Surface	223
	9.2.3 Clean Gold Tip/Nickel Surface	224
	9.2.4 Nickel Tip/Hexadecane Film/Gold Surface	230
	9.2.5 CaF ₂ Tip/CaF ₂ Surface	237
	9.2.6 Silicon Tip/Silicon Surface	241
	References.	246

	Contents	XI
10.	Theory of Contact Force Microscopy on Elastic Media	
-0.	By G. Overney (With 13 Figures)	251
	10.1 Description of a Scanning Force Microscope	251
	10.2 Elastic Properties of Surfaces	252
	10.2.1 Continuum Elasticity Theory	
	for Layered Materials	253
	10.2.2 Atomic Theory	256
	10.3 Interaction Between SFM and Elastic Media	259
	10.3.1 Local Flexural Rigidity	263
	10.4 Conclusions and Outlook	267
	References	267
11.	Theory of Atomic-Scale Friction	•
	By D. Tománek (With 17 Figures)	269
	11.1 Microscopic Origins of Friction	269
	11.2 Ideal Friction Machines	272
	11.2.1 Sliding Friction	272
	11.2.2 Rolling Friction	277
	11.3 Predictive Calculations of the Friction Force	279
	11.3.1 Tip-Substrate Interactions in Realistic Systems:	
	Pd on Graphite	279
	11.3.2 Atomic-Scale Friction in Realistic Systems:	
	Pd on Graphite	283
	11.4 Limits of Non-destructive Tip-Substrate Interactions	
	in Scanning Force Microscopy	287
	References.	291
12.	Theory of Non-contact Force Microscopy	
	By U. Hartmann (With 34 Figures)	293
	12.1 Methodical Outline	293
	12.2 Van der Waals Forces	294
	12.2.1 General Description of the Phenomenon	294
	12.2.2 The Two-Slab Problem: Separation of Geometrical	
	and Material Properties	297
	12.2.3 Transition to Renormalized Molecular Interactions	302
	12.2.4 The Effect of Probe Geometry	305
	12.2.5 Dielectric Contributions: The Hamaker Constants.	312
	12.2.6 On the Observability of Van der Waals Forces	323
	12.2.7 The Effect of Adsorbed Surface Layers	326
	12.2.8 Size, Shape, and Surface Effects:	320
	Limitations of the Theory	328
	12.2.9 Application of Van der Waals Forces to	320
	Molecular-Scale Analysis and Surface Manipulation	332
	12.2.10 Some Concluding Remarks	335
	12.2.10 Some Concluding Remarks	333

XII	Contents
ΛII	Comemis

12.3 Ionic Forces	336
12.3.1 Probe-Sample Charging in Ambient Liquids	336
12.3.2 The Effect of an Electrolyte Solution	340
12.4 Squeezing of Individual Molecules: Solvation Forces	345
12.5 Capillary Forces	
12.6 Conclusions	
References	
References	337
13. Recent Developments	
By N.D. Lang, G. Doyen, D. Drakova, M. Tsukada,	
N. Kobayashi, K. Hirose, C.R. Leavens, U. Hartmann,	
and E. Siebel (With 13 Figures)	361
13.1 STM Imaging of Single-Atom Adsorbates on Metals	361
13.2 The Scattering Theoretical Approach	
to Scanning Tunneling Microscopy	
and Scanning Tunneling Spectroscopy	362
13.2.1 Scanning Tunneling Spectroscopy	362
13.2.2 STS on Metal Surfaces	
13.2.3 Local Electron Relaxation Effects in STM -	
A Key to Understanding Large Corrugation	
Amplitudes	366
13.2.4 STM and SFM - The Role of the Tip Atom	368
13.2.5 STM Imaging of Semiconductor Surfaces	370
13.2.6 Summary and Conclusions	371
13.3 Theory of Atom Transfer Between	
the Tip and the Surface	372
13.4 Bohm Trajectories and Tunneling-Time Problem	375
13.5 Non-Contact Force Microscopy	376
References	384
Subject Index	387
Contents of Scanning Tunneling Microscopy I	
(Springer Series in Surface Sciences, Vol. 20)	393
Contents of Comming Thursdies Missesses II	
Contents of Scanning Tunneling Microscopy II	207
(Springer Series in Surface Sciences, Vol. 28)	397

Contributors

G.C. Aers

Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada

C.J. Chen

IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

S. Ciraci

Department of Physics, Bilkent University, Bilkent 06533, Ankara, Turkey

G. Doven

Institute of Physical Chemistry, Ludwig-Maximilians-University Munich, P.O. Box 700466, D-81304 Munich, Germany

D. Drakova

University of Sofia, 1 J. Bourchier, Sofia 1126, Bulgaria

H.-J. Güntherodt

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

U. Hartmann

Institute of Experimental Physics, University of Saarbrücken, P.O. Box 151150, D-66041 Saarbrücken, Germany

K. Hirose

NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305, Japan

XIV Contributors

N. Isshiki

Institute for Knowledge and Intelligence Science, kao Corporation, Bunka 2-1-3, Sumida-ku, Tokyo 131, Japan

H. Kageshima

NTT LSI Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa-ken, Japan

N. Kobayashi

Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

U. Landman

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

N.D. Lang

IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

C.R. Leavens

Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada

W.D. Luedtke

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

C. Noguera

Laboratoire de Physique des Solides, Associé au CNRS, Université de Paris Sud, F-91405 Orsay, France

G. Overney

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1116, USA

T. Schimizu

Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

E. Siebel

Institute of Thin Film and Ion Technology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

D. Tománek

Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824-1116, USA

M. Tsukada

Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

S. Watanabe

Aono Atomcraft Project, ERATO, Research Development Corporation of Japan, Kaga 1-7-13, Itabashi-ku, Tokyo 173, Japan

R. Wiesendanger

Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany