JAN F. RABEK

Photodegradation of Polymers

Springer

Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Jan F. Rabek

Photodegradation of Polymers

Physical Characteristics and Applications

With 94 Figures and 26 Tables

JAN F. RABEK

Polymer Research Group Department of Dental Biomaterials Science Karolinska Institute Royal Institute of Medicine Stockholm, Sweden

ISBN-13:978-3-642-80092-4

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek – CIP-Einheitsaufnahme Rabek, Jan F.: Photodegradation of polymers : physical characteristics and applications ; with 28 tables / Jan F. Rabek. - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer, 1996 ISBN-13:978-3-642-80092-4 e-ISBN-13:978-3-642-80090-0 DOI: 10.1007/978-3-642-80090-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996 Softcover reprint of the hardcover 1st edition 1996

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Coverdesign: Lewis + Leins, Berlin Typesetting: Scientific Publishing Services (P) Ltd., Madras Production: PRODUserv Springer Produktions-Gesellschaft, Berlin SPIN 10114982 2/3020-5 4 3 2 1 0 - Printed on acid-free paper

In memory of my father, Professor T.I. Rabek, founder of the Polymer Technology Institute at Wrocaw Technical University, Poland, an outstanding scientist and teacher who introduced me to the study of polymer chemistry

Books must follow sciences, and not sciences books Robert Greene (1560–1592)

Preface

The last two decades have seen dramatic advances in the understanding of the chemical reactions involved in the photodegradation of polymers. However, there are still many unanswered questions regarding the effects of UV radiation on the physical, rheological and mechanical properties of polymers.

This book was written to introduce scientists, engineers and advanced students working in polymer science and technology to the physical characteristics and practical aspects of polymer photodegradation. The changes in the structure-property relationships under UV and visible light irradiation are presented. Rather than providing a theoretical treatment of a subject only, experimentally collected and practical information on experimental work is offered. The reader can use this to complete his or her knowledge of the chemical aspects of polymer photodegradation, i.e. the mechanisms of reactions. Many issues are deliberately not considered in detail, as it has been necessary to keep this book within manageable portions (200–250 pages). The published literature on the photodegradation of polymers is vast, probably amounting to several thousand references. Only some of the most important references are mentioned to provide the reader who wishes to explore the literature in greater depth with a small number of useful starting points.

This book represents the author's experience, based on his 30 years in research on the photodegradation and photostabilization of polymers. The author has never abandoned the laboratory in that time and has maintained his enthusiasm for empirical science. It is hoped that the information provided in this book will enable the reader to become more familiar with the physical characteristics and applied aspects of polymer photodegradation in greater depth and on a broader front.

I must acknowledge my gratitude to my wife Ewelina whose patience, support and companionship have always facilitated my work, and who is firmly on my side in difficult times.

The author is grateful to Professor Otto Vogl from Polytechnic University, Brooklyn, USA for his recommendation to the Editor that allowed this book to be written.

The author would also like to express his gratitude to Professor Lars-Åke Lindén, Head of the Department of Dental Biomaterials, Karolinska Institute, Royal Academy of Medicine in Stockholm for giving him the opportunity to continue to work on polymer photodegradation. Working in a well managed and professional establishment in a friendly atmosphere is a most rewarding experience.

> JAN F. RABEK Stockholom, 1996

Contents

Preface		
1	Absorption of Radiation	1
1.1	Radiation and Its Energy	1
1.2	SI Units Used in Photochemistry	2
1.3	Absorption Cross Section	2
1.4	Practical Aspects of the Lambert-Beer Equation	4
2	Electronically Excited States in Polymers	9
2.1	Formation of Excited States	9
2.2	Radiative Processes	10
2.3	Radiationless Transitions	10
2.4	Excitation of Chromophores	11
2.5	Luminescence Emission from Chromophores	13
2.6	Kinetics of Photophysical Processes	14
2.7	Quenching Processes of Excited States	16
2.8	Quenching Processes in Solution	16
2.9	Quenching Processes in Polymer Matrices	19
3	Electronic Energy Transfer Processes in Polymers	20
3.1	Energy Transfer in Photodegradation Processes	20
3.2	Physical Aspects of Electronic Energy Transfer	20
3.3	Radiative Energy Transfer	21
3.4	Electron Exchange Energy Transfer	22
3.5	Resonance Excitation Energy Transfer	23
3.6	Efficiency of Energy Transfer	26
3.7	Spectroscopic Overlap Integral	28
3.8	Energy Transfer Processes in Solution	28
3.9	Diffusion-Controlled Reactions	29
3.10	Solvent Effects	31
3.11	Viscosity Effects	32
3.12	Energy Transfer in Rigid Polymer Matrix	33
3.13	Spectroscopic Methods for the Determination of Electronic	
	Energy Transfer Processes	36
3.14	Singlet–Singlet Energy Transfer in Polymers	38
3.15	Triplet–Triplet Energy Transfer in Polymers	38

	Energy Transfer from Carbonyl Groups to Hydroperoxides .	39
3.17	Energy Transfer from Phenyl Group to Hydroperoxides	40
	Excited State Annihilation Processes	41
3.19	Energy Migration in Polymers	42
	Energy Migration in Excimer-Forming Polymers	46
4	Photo-Oxidative Degradation	51
4.1	Introduction to Photochemical Reactions in Polymers	51
4.2	Photochemical Laws	51
4.3	Photochemical Activation	52
4.4	Photodissociation of a Molecule	53
4.5	Quantum Yields of Photodegradation	54
4.6	Absorption of Radiation by Polymers	55
4.7	Formation of UV/Light Absorbing Impurities	57
4.8	Photoinitiation of Polymer Degradation	59
4.9	General Mechanism of Polymer Photo-Oxidative Degradation	60
4.9	Chain Propagation	61
4.10	Photochain-Oxidation Reaction	62
		62
4.12	Main Chain Scission	63
	Chain Branching	64
4.14	Termination Reaction	64 65
	Dark Processes in Photodegradation of Polymers	
	Hydrogen Atom Abstraction	65
	Formation of Hydroxy and/or Hydroperoxy Groups	66
	Homolytic Decomposition of Hydroperoxides	67
	Photodecomposition of Hydroperoxide Groups	68
4.20	Reactions of Hydroxy (HO·) and Hydroperoxy (HO ₂ ·)	(0)
	Radicals with Polymers	69
4.21	Formation of Carbonyl Groups	71
	Formation of Carboxylic and Per-Carboxylic Groups	74
	Norrish Type I and Type II Reactions	77
	Formation of α , β -Unsaturated Carbonyl Groups	79
4.25	Conversion of Polymeric Free Radicals Under UV/Visible	
	Radiation and Warming	80
	Photodegradation of Chlorinated Polymers	81
4.27	Phenyl Ring-Opening Photo-Reactions	82
4.28	PhotoFries Rearrangement in Polymers	82
4.29	Photo-Oxygenation of Polymers by Singlet Oxygen	83
4.30	Photoinitiated Degradation of Polymers	87
	Photoinitiated Degradation of Polymers by Dyes	89
	Photoinduced Electron Transfer	97
5	Physical Factors Which Influence Photodegradation	98
5.1	Effect of Free Volume	98
5.1 5.2	Effect of the Glass Transition Temperature	100
5.2 5.3	Effect of Crystallinity	100
5.5		102

Contents

5.4	Localization of the Oxidation Processes in Semicrystalline	104
5 5	Polymers	104
5.5	Chemicrystallization Process	
5.6	Effect of Polymer Molecular Weight	105
5.7	Effect of the Formation of Hydrogen Bonds	106
5.8	Cage Recombination	107
6	Kinetic Treatments of Degradation	109
6.1	Photodegradation in Isothermal and	
	Non-Isothermal Conditions	109
6.2	Decay of Free Radicals in a Polymer Matrix	110
6.3	Spin Trapping of Polymeric Radicals	112
6.4	Photodepolymerization	114
6.5	Kinetics of Photodegradation	117
6.6	Number of Main Chain Scissions	119
		120
6.7	Quantum Yield of Chain Scission	
6.8	Quantum Yield of Crosslinking	121
6.9	Principles Governing the Changes in Molecular Weight and Molecular Weight Distribution During Polymer	
	Photodegradation	125
6.10	Reaction Kinetics of Polymer Photo-Oxidation	126
6.11	Diffusion Controlled Oxidation of Polymers	131
	Oxidation Profiles	133
0.12		155
7	Photodegradation of Solid Polymers	136
7.1	Differences Between Photodegradation of Polymers in Solid and Liquid Phases	136
7 2		130
7.2	Polymer Mechanical Properties Affected by Degradation	
7.3	Role of Water in the Degradation Processes	138
7.4	Effect of Orientation on Degradation	140
7.5	Degradation of Polymers Under Deformation Forces	141
7.6	Feedback in Polymer Degradation	142
7.7	Stress-Accelerated Photo-Oxidation of Polymers	143
7.8	Photodegradation of Polymers for Solar Energy Devices	144
8	Photodecomposition of Polymers by Laser Radiation	146
8.1	Ablative Photodecomposition of Polymers	146
8.2	Photokinetic Etching	158
8.3	Thermal Processing of Polymers by Visible and Infrared Laser Radiation	158
		1.50
9	Practical Aspects of Polymer Photodegradation	161
	Tractical Aspects of Forymer Flotoacgradation	
9.1	Photodegradation of Polymers Under Weathering Conditions	161

9.3	Photodegradation of Polymers Under Marine Exposure	
	Conditions	163
9.4	Hydrolysis Processes During Ageing of Polymers	164
9.5	Plastic Ecological Problems	165
9.6	Photodegradable Polymers with Controlled Lifetimes	166
9.7	Ecolyte Plastics	168
9.8	Plastic Protective Films	170
9.9	Recovery of Photodegraded Polymers	171
9.10	Photodegradation of Polymers in the Polluted Atmosphere	171
9.11	Photodegradation of Polymers in the Stratosphere	173
9.12	Photodegradation of Polymers in Space	175
9.13	Atomic Oxygen Reactions with Polymers	180
9.14	Polymeric Photoinitiators Operating with a Fragmentation	
	Mechanism	183
9.15	Positive-Working Photoresists	187
10	References	193
Index		209