Skip to main content

Heavy Metal Retention by Soil Organic Matter under Changing Environmental Conditions

  • Chapter
Biogeodynamics of Pollutants in Soils and Sediments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Impacts of human activities, which lead to a sudden, catastrophic event after a long period of delay, range among the most critical environmental problems. The algal blooms in the Adriatic Sea, or the stratospheric ozone losses are only two examples of such events for which the term “chemical time bomb” (CTB) has been coined. Continuous accumulation of pollutants in the environment from anthropogenic sources has to be recognized as the cause. With respect to soils and sediments, Stigliani et al. (1991) have defined a CTB as “a concept that refers to a chain of events, resulting in the delayed and sudden occurrence of harmful effects due to the mobilization of chemicals stored in soils and sediments in response to slow alterations to the environment”. It should be noted that chemicals which are mobilized are not necessarily man-made, but can also have a natural source. Aluminum e.g., the third most abundant element in the earth’s crust, is mobilized in soil only under acidic conditions. It is supposed, however, that the environmental alterations resulting in the mobilization of these chemicals are driven by human activities. Finally, the term “sudden” has to be understood with respect to the time scales of environmental changes and of possible political or operational reactions and countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M, Scow KM (1989) Kinetics of biodegradation in soil. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils, Soil Sci Soc Am, Spec Publ No 22, Madison WI, USA, pp 243–269

    Google Scholar 

  • Anderson DW, Paul EA (1984) Organo-mineral complexes and their study by radiocarbon dating. Soil Sci Soc Am J 48:298–301

    Article  CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, Soil Pollut 47:335–379

    Article  Google Scholar 

  • Babich H, Stotzky G (1977) Sensitivity of various bacteria, including actinomycetes, and fungi to cadmium and the influence of pH sensitivity. Appl Environ Microbiol 33:681–695

    CAS  Google Scholar 

  • Beck T (1981) Untersuchungen über die toxische Wirkung der in Siedlungsabfällen häufigen Schwermetalle auf die Bodenmikroflora. Z Pflanzenern Bodenkd 144:613–627

    Article  CAS  Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31

    Article  CAS  Google Scholar 

  • Bloomfield C, Sanders JR (1977) The complexing of copper by humified organic matter from laboratory preparations, soil and peat. J Soil Sci 28:435–444

    Article  CAS  Google Scholar 

  • Blundell MR, Wild DG (1969) Inhibition of bacterial growth by metal salts: a survey of the effects on the synthesis of ribonuclei acid and protein. Biochem J 115:207–212

    CAS  Google Scholar 

  • Bosatta E, Ågren GI (1985) Theoretical analysis of decomposition of heterogeneous substrates. Soil Biol Biochem 17:601–610

    Article  CAS  Google Scholar 

  • Bosatta E, Ågren GI (1991) Theoretical analysis of carbon and nutrient interactions in soils under energy-limited conditions. Soil Sci Soc Am J 55:728–733

    Article  CAS  Google Scholar 

  • Boudot JP (1992) Relative efficiency of complexed aluminium, noncrystalline Al hydroxide, allophane and imogolite in retarding the biodegradation of citric acid. Geoderma 52:29–39

    Article  CAS  Google Scholar 

  • Boudot JP, Bel Hadj Brahim A (1989) Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol Biochem 21(7):961–966

    Article  CAS  Google Scholar 

  • Bouwman, AF (ed)(1990) Soils and the greenhouse effect. Wiley, Chichester, UK, 575 pp

    Google Scholar 

  • Browder JA, Volk BC (1978) Systems model of carbon transformations in soil subsidence. Ecol Modelling 5:269–292

    Article  CAS  Google Scholar 

  • Brussaard L, Bouwman LA, Geurs M, Hassink J, Zwart KB (1990) Biomass, composition and temporal dynamics of soil organisms of a silt loam soil under conventional and integrated management. Neth J Agric Sci 38:283–302

    Google Scholar 

  • Buffle J (1988) Complexation reactions in aquatic systems — an analytical approach. Ellis Horwood Limited, Chichester, West Sussex, UK, 692 pp

    Google Scholar 

  • Bunnell FL, Tait DEN, Flanagan PW (1976) Microbial respiration and substrate weight loss, II. A model of the influences of chemical composition. Soil Biol 9:41–47

    Article  Google Scholar 

  • Bunzl K, Schmidt W, Sansoni B (1976a) Kinetics of ion exchange in soil organic matter IV. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+ and Ca2+ by peat. J Soil Sci 27:32–41

    Article  CAS  Google Scholar 

  • Bunzl K, Wolf A, Sansoni B (1976b) Kinetics of ion exchange in soil organic matter V. Differential ion exchange reactions of Cu2+, Cd2+, Zn2+ and Ca2+-ions in humic acid. Z Pfanzenern Bodenk 139:475–485

    Article  Google Scholar 

  • Chander J, Brookes PC (1991) Plant inputs of carbon to metal-contaminated and non-contaminated soil and effects on the synthesis of soil microbial biomass. Soil Biol Biochem 23:917–925

    Article  CAS  Google Scholar 

  • Clark MD, Gilmour JT (1983) The effect of temperature on decomposition at optimum and saturated soil water contents. Soil Sci Soc Am J 47:927–929

    Article  CAS  Google Scholar 

  • Cole MA (1977) Lead inhibition of enzyme synthesis in soil. Appl Environ Microbiol 33:262–268

    CAS  Google Scholar 

  • Coleman DC (1985) The role of microfloral and faunal interactions in affecting soil processes. In: Mitchell MJ, Nakas J (eds) Microflora and faunal interactions in natural and agro-ecosystems. Nijhoff, Dordrecht, pp 317–348

    Google Scholar 

  • Coleman DC, Anderson RV, Cole CV, Elliott ET, Woods L, Campion MK (1978) Trophic interactions in soils as they affect energy and nutrient dynamics, IV. Flows of metabolic and biomass carbon. Microb Ecol 4:373–380

    Article  CAS  Google Scholar 

  • Collins YE, Stotzky G (1989) Factors affecting the toxicity of heavy metals to microbes. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, 461 pp

    Google Scholar 

  • Davies RI, Chesire MV, Graham-Bryce IJ (1969) Retention of low levels of copper by humic acid. J Soil Sci 20:65–71

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1979a) Effect of lead on soil respiration and dehydrogenase activity. Soil Biol Biochem 11:475–479

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L (1979b) Effects of lead on the decomposition of organic matter. Soil Biol Biochem 11:481–485

    Article  CAS  Google Scholar 

  • Domsch KH (1985) Funktion und Belastbarkeit des Bodens aus Sicht der Mikrobiologie. Kohlhammer, Stuttgart, 67 pp

    Google Scholar 

  • Doyle JJ, Marschall RT, Pfander WH (1975) Effects of cadmium on the growth and uptake of cadmium by microorganisms. Appl Microbiol 29:562–564

    CAS  Google Scholar 

  • Duxburry T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15:243–250

    Article  Google Scholar 

  • Eijsackers H, Zehnder AJB (1990) Litter decomposition: a Russian matriochka doll. Biogeochem 11:153–174

    Article  Google Scholar 

  • Elliott ET, Anderson RV, Coleman DC, Cole DC (1980) Habitable pore space and microbial trophic interactions. Oikos 35:327–335

    Article  Google Scholar 

  • Fogel R, Cromack K (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can J Bot 55:1632–1640

    Article  Google Scholar 

  • Follett RF, Stewart JWB, Cole CV (eds)(1987) Soil fertility and organic matter as critical components of production systems. Soil Sci Soc Am Madison WI, USA, Spec Publ No 19, 166 pp

    Google Scholar 

  • Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agriculture, Ecosystems and Environment 24:195–217

    Article  Google Scholar 

  • Frimmel FH, Christman RF (eds)(1988) Humic substances and their role in the environment. Wiley, New York, 271 pp

    Google Scholar 

  • Frissel MJ, Veen JA van (eds)(1981) Simulation of nitrogen behavior of soil-plant systems. Pudoc, Wageningen, 277 pp

    Google Scholar 

  • Gabteni N, Gallali T (1988) Etude expérimentale des interactions entre éléments métalliques et la minéralisation de la matiére organique d’une boue résiduaire ajoutée à un sol. Cah ORSTOM Ser Pedol 24:255–261

    CAS  Google Scholar 

  • Gamble DS, Schnitzer M, Hoffman I (1970) Cu2+-fulvic acid chelation equilibrium in 0.1 M KCl at 25°C. Can J Chem 48:3197–3204

    Article  CAS  Google Scholar 

  • Geiger G (1990) Keimverhalten und Schwermetallaufnahme von Pflanzen nach verschiedenen Sanierungsmethoden an einem Boden in Dornach. Diplomarbeit, Institut für terrestrische Ökologie, Labor für Bodenchemie, ETH Zürich, 64 pp

    Google Scholar 

  • Gisi U, Schenker R, Schulin R, Stadelmann FX, Sticher H (1990) Bodenökologie. Thieme, Stuttgart, 304 pp

    Google Scholar 

  • Greenland DJ, Hayes MHB (eds)(1981) The chemistry of soil processes. Wiley, Chichester, 714 pp

    Google Scholar 

  • Hassett JJ, Banwart WL (1989) The sorption of nonpolar organics by soils and sediments. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. Soil Sci Soc Am, Madison WI, USA, Spec Publ No 22, pp 31–44

    Google Scholar 

  • Hatcher PG, Spiker EC (1988) Selective degradation of plant biomolecules. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, New York, pp 59–74

    Google Scholar 

  • Hayes MHB, Hirnes FL (1986) Nature and properties of humus-mineral complexes. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison WI, USA, Spec Publ No 17, pp 103–158

    Google Scholar 

  • Hering JG, Morel FMM (1990) Kinetics of trace metal complexation: ligand exchange reactions. Environ Sci Technol 24:242–252

    Article  CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier, London, 366 pp

    Google Scholar 

  • Huang PM, Schnitzer M (eds)(1986) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison WI, USA, Spec Publ No 17, 606 pp

    Google Scholar 

  • Hunt HW, Coleman DC, Cole CV, Ingham RE, Elliott ET, Woods LE (1984) Simulation model of a food web with bacteria, amoebae and nematodes in soil. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. Am Soc Microbiol, Washington DC, USA, pp 346–352

    Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biol Fert Soils 3:57–68

    Article  Google Scholar 

  • Ingham RE, Trofymow JA, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrients cycling and plant growth. Ecol Monogr 55(1):119–140

    Article  Google Scholar 

  • Ingham ER, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986a) Tropic interactions and nitrogen cycling in a semi-arid grassland soil, I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J Appl Ecol 23:597–614

    Article  Google Scholar 

  • Ingham ER, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986b) Tropic interactions and nitrogen cycling in a semi-arid grassland soil, II. System responses to removal of different groups of soil microbes or fauna. J Appl Ecol 23:615–630

    Article  CAS  Google Scholar 

  • Jenkinson DS (1977) Studies on the decomposition on plant material in soil IV. The effect on rate addition. J Soil Sci 28:417–423

    Article  CAS  Google Scholar 

  • Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York, 218 pp

    Google Scholar 

  • Jordan MJ, Lechevalier MP (1975) Effects of zinc-smelter emissions on forest soil microflora. Can J Microbiol 21:1855–1865

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, 365 pp

    Google Scholar 

  • Knapp EG, Elliott LF, Campbell GS (1983) Carbon, nitrogen, and microbial biomass interrelationship during the decomposition of wheat straw: a mechanistic simulation model. Soil Biol Biochem 15:455–461

    Article  Google Scholar 

  • Kögel-Knabner I (1992) Forest soil organic matter: structure and formation. Bayreuther Bodenk Ber No 24, 103 pp

    Google Scholar 

  • Küster E, Grün I (1984) Cadmium und Bodenorganismen. Angew Botanik 58:31–38

    Google Scholar 

  • Ladd JN, Oades JM, Amato M (1981) Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol Biochem 13:119–126

    Article  CAS  Google Scholar 

  • Liang CN, Tabatabai MA (1977) Effects of trace elements on nitrogen mineralisation in sols. Environ Pollut 12:141–147

    Article  Google Scholar 

  • Lindsay WL (1981) Solid phase-solution equilibria in soils. In: Stelly M, Krai DM, Cousin MK (eds) Chemistry in the soil environment. Spec Publ No 40, Am Soc Agr and Soil Sci Soc Am, Madison WI, USA, pp 183–202

    Google Scholar 

  • MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds)(1990) Humic substances in soil and crop sciences: selected readings. Am Soc Agr and Soil Sci Soc Am, Madison WI, USA, 281 pp

    Google Scholar 

  • Macrae IE, Edwards JF (1972) Adsorption of colloidal iron by bacteria. Appl Microbiol 24:819–823

    CAS  Google Scholar 

  • Marinsky JA, Gupta S, Schindler P (1982) The interaction of the Cu(II) ion with humic acid. J Colloid Interface Sci 89:401–411

    Article  CAS  Google Scholar 

  • Martens R (1990) Contribution of rhizodeposits to the maintenance and growth of soil microbial biomass. Soil Biol and Biochem 22:141–147

    Article  Google Scholar 

  • Martin JP (1971) Decomposition and binding actions of polysaccharides in soil. Soil Biol Biochem 3:33–41

    Article  CAS  Google Scholar 

  • Martin JP, Ervin JO, Shepherd RA (1966) Decomposition of the iron, aluminium, zinc, and copper salts of complexes of some microbial and plant polysaccharides in soil. Soil Sci Soc Am J 30:196–200

    Article  CAS  Google Scholar 

  • McGill WB, Hunt HW, Woodmansee RG, Reuss JO, Paustian KH (1981) Formulation, process controls, parameters and performance of PHOENIX: a model of carbon and nitrogen dynamics in grassland soils. In: Frissel MJ, Veen JA van (eds) Simulation of nitrogen behaviour of soil-plant systems. Pudoc, Wageningen, pp 171–191

    Google Scholar 

  • McGrath SP, Brookes PC, Giller KE (1988) Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biol Biochem 20:415–424

    Article  CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Merckx R, Hartog A den, Veen JA van (1985) Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol Biochem 17:565–569

    Article  Google Scholar 

  • Monteil MB (1989) Der Einfluss von Cd, Cu und Pb auf die CO2-Produktion von Waldböden. Inaugural dissertation, Universität Bern, 122 pp

    Google Scholar 

  • Moore JC, Zwetsloot HJC, Ruiter PC (1990) Statistical analysis and simulation modelling of the below-ground food webs of two winter wheat management practices. Neth J Agric Sci 38:303–316

    Google Scholar 

  • Morrissey RF (1975) The influence of heavy metals on microbially mediated nitrogen transformations in soil: nitrification and ammonification. Diss Abstr Int B Sci Eng 36:3237

    Google Scholar 

  • Nordgren A, Bååth E, Söderström B (1983) Microfungi and microbial activity along a heavy metal gradient. Appl Environ Microbiol 45:1829–1837

    CAS  Google Scholar 

  • Oades JM (1988) The retention of organic matter of soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am, Madison WI, USA, SSSA Book Series, No 1, pp 89–159

    Google Scholar 

  • Parnas H (1975) Model for decomposition of organic materials by microorganisms. Soil Biol Biochem 7:161–169

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry 5:109–131

    Article  CAS  Google Scholar 

  • Paul EA, FE Clark (1989) Soil microbiology and biochemistry. Academic Press, San Diego, Calif, 273 pp

    Google Scholar 

  • Paustian K (1985) Influence of fungal growth pattern on decomposition and nitrogen mineralization in a model system. In: Fitter AH (ed) Ecological interactions in soil. Brit Eqol Soc, Blackwell Sci Publ, Oxford, Spec Publ No 4, pp 159–174

    Google Scholar 

  • Pearce F (1994) Peat bogs hold bulk of Britain’s carbon. New Scientist vol 144, no 1952, 6

    Google Scholar 

  • Peterson RC Jr (1990) Effects of ecosystem changes (eg, acid status) on formation and biotransformation of organic acids. In: Perdue EM, Gjessing ET (eds) Organic acids in aquatic ecosystems. Dahlem Konferenzen 1990. Wiley, New York, pp 151–166

    Google Scholar 

  • Piscator M (1986) The dependence of toxic reactions on the chemical species of elements. In: Bernhard M, Brinkman RE, Sadler PJ (eds) The importance of chemical ‘speciation’ in environmental processes. Dahlem Konferenzen 1986. Springer, Berlin Heidelberg New York pp 59–70

    Chapter  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Protective effects of certain environmental factors on the toxicity of zinc, mercury, and methylmercury to Chlorella vulgaris. Environ Res 25:250–259

    Article  CAS  Google Scholar 

  • Rich S, Horsfall JG (1963) Fungicides as metabolic inhibitors. In: Höchster RM, Quastel JH (eds) Metabolic inhibitors. Academic, New York, pp 263–284

    Google Scholar 

  • Schindler PW (1990) Co-adsorption of metal ions and organic ligands: formation of ternary complexes. In: Hochella MF Jr, White AF (eds) Mineral-water interface geochemistry. Mineralogical Soc of America Washington DC, pp 281–307

    Google Scholar 

  • Schindler PW, Galicia H, Purghart BG, Marquis L, Monteil M, Nyffeler UP (1991) Schwermetallbelastung und -toxizität von Waldböden. In: Pankow W (ed) Ergebnisse aus dem Nationalen Forschungsprogramm 14: Belastung von Waldböden Bd 6 Verlag der Fachvereine, Zürich, pp 45–100

    Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, Berlin Heidelberg New York pp 195–220

    Google Scholar 

  • Schmitt HW, Sticher H (1991) Heavy metal compounds in the soil. In: Merian E (ed) Metals and their compounds in the environment — occurrence analysis and biological relevance.VCH Verlagsgesellschaft, Weinheim, Germany, pp 311–331

    Google Scholar 

  • Schnitzer M (1991) Soil organic matter — the next 75 years. Soil Sci 151:41–58

    Article  Google Scholar 

  • Schnitzer M (1986) Binding of humic substances by soil mineral colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes.Spec Publ No 17 Soil Sci Soc Am Madison, WI, USA, pp 77–101

    Google Scholar 

  • Schnitzer M, Hanson EH (1970) Organo-metallic interactions in soils: 8. An evaluation of methods for the determination of stability constants of metal-fulvic acid complexes. Soil Sci 109:333–340.

    CAS  Google Scholar 

  • Schnitzer M, Kahn SU (1972) Humic substances in the environment. Marcel Dekker Inc, New York, 327 pp

    Google Scholar 

  • Schwarzenbach RP, Westall C (1981) Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ Sci Technol 15:1360–1367

    Article  CAS  Google Scholar 

  • Shaw AJ (1989) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, 355 pp

    Google Scholar 

  • Smith DD, Wischmeier WH (1957) Factors affecting sheet and rill erosion. Transact Am Geophys Union 38:889–896

    Google Scholar 

  • Smith OL (1979) An analytical model of the decomposition of soil organic matter. Soil Biol Biochem 11:585–606

    Article  CAS  Google Scholar 

  • Sørensen LH (1974) Rate of decomposition of oranic matter in soil as influenced by repeated air drying-rewetting and repeated additions of organic material. Soil Biol Biochem 6:287–292

    Article  Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford Univ Press, New York, 234 pp

    Google Scholar 

  • Sposito G (1986) Sorption of trace metals by humic materials in soils and natural waters. CRC Critical Rev Environ Control 16(2):193–229

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford Univ Press, New York, 277 pp Stadelmann FX, Santschi-Fuhrmann E (1987) Beitrag zur Abstützung von Schwermetall-Richtwerten im Boden mit Hilfe von Bodenatmungsmessungen. Bericht der Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC) Bern-Liebefeld Schweiz 105 pp

    Google Scholar 

  • Stadelmann FX, Santschi-Fuhrmann E (1987) Beitrag zur Abstützung von Schwermetall-Richtwerten im Boden mit Hilfe von Bodenatmungsmessungen. Bericht der Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC) Bern-Liebefeld Schweiz 105 pp

    Google Scholar 

  • Stevenson FJ (1976) Stability constants of Cu2+ Pb2+ and Cd2+ complexes with humic acids. Soil Sci Soc Am J 40:665–672

    Article  CAS  Google Scholar 

  • Stevenson FJ (1982) Humus Chemistry. Wiley, New York, 443 pp

    Google Scholar 

  • Stevenson FJ, Fitch A (1986) Chemistry of complexation of metal ions with soil solution organics. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes.Soil Sci Soc Am Madison, WI, USA Spec Publ No 17 pp 29–58

    CAS  Google Scholar 

  • Stigliani WM, Doelman P, Salomons W, Schulin R, Meulen-Smidt GRB ter, Zee SEATM van der (1991) Chemical time bombs — predicting the unpredictable. Environment 33(4):4–9 and 26–30

    Article  Google Scholar 

  • Strojan CJ (1978) Forest leaf litter decomposition in the vicinity of a zinc smelter. Oecologia 32:201–212

    Article  Google Scholar 

  • Stumm W, Furrer G (1987) The dissolution of oxides and aluminum silicates; examples of surface-coordination controlled kinetics. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp 197–217

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry — an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New York, 780 pp

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology, vol 5. Blackwell Scientific Publications, Oxford, 372 pp

    Google Scholar 

  • Tate RL (1987) Soil organic matter. Wiley, New York, 291 pp

    Google Scholar 

  • Tiessen H, Stewart JWB, Hunt HW (1984) Concept of organic matter transformations in relation to organo-mineral particle size fractions. Plant Soil 76:287–295

    Article  CAS  Google Scholar 

  • Tyler G (1981) Heavy metals in soil biology and biochemistry. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Dekker, New York, pp 371–414

    Google Scholar 

  • Veen JA van (1987) The use of simulation models of the turnover of soil organic matter: an intermediate report, vol 6. Trans XIII Congr Int Soc Soil Sci. Hamburg, pp 626–635

    Google Scholar 

  • Veen JA van, Paul EA (1981) Organic carbon dynamics in grassland soils, I. Background information and computer simulation. Can J Soil Sci 61:185–201

    Article  Google Scholar 

  • Veen JA van, Ladd JN, Frissel MJ (1984) Modelling C and N turnover through the microbial biomass in soil. Plant Soil 76:257–274

    Article  Google Scholar 

  • Veen JA van, Ladd JN, Amato M (1985) Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and clay soil incubated with (14C(u)) Glucose and (15N) (NH4)2SO4 under different moisture regimes. Soil Biol Biochem 17(6):747–756

    Article  Google Scholar 

  • Verberne ELJ, Hassink J, Willigen P de, Groot JJR, Veen JA van (1990) Modelling organic matter dynamics in different soils. Neth J Agrie Sci 38:221–238

    CAS  Google Scholar 

  • Waller PA, Pickering WF (1990) The lability of copper ions sorbed on humic acid. Chem Spec Bioavail 2(4):127–138

    CAS  Google Scholar 

  • Watson AP, Hook RI van, Jackson DR, Reichte DE (1976) Impact of a lead mining-smelting complex on the forest floor litter arthropod fauna in the new lead belt region of southeastern Missouri. ORNL/NSF/EATC-30 Oak Ridge National Laboratory, 180 pp

    Google Scholar 

  • Welp G, Brummer GW (1989) Wirkung von Schwermetallen auf Boden-Mikroorganismen in Beurteilung von Schwermetallkontaminationen im Boden. Dechema-Fachgespräche Umweltschutz. 21–22 Jan 1988 in Oberursel/Ts, pp 253–269

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulin, R., Geiger, G., Furrer, G. (1995). Heavy Metal Retention by Soil Organic Matter under Changing Environmental Conditions. In: Salomons, W., Stigliani, W.M. (eds) Biogeodynamics of Pollutants in Soils and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79418-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79418-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79420-9

  • Online ISBN: 978-3-642-79418-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics