Skip to main content

The Ligands and Receptors of the Lymphotoxin System

  • Chapter
Book cover Pathways for Cytolysis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 198))

Abstract

The tumor necrosis factor (TNF)-related cytokines have emerged over the past 2 years as a large family of pleiotropic mediators of host defense and immune regulation. Members of this family exist in membrane-anchored forms acting locally through cell-to-cell contact, or as secreted proteins capable diffusion to more distant targets. A parallel family of receptors signals the presence of these molecules leading to the initiation of cell death or cellular proliferation and differentiation in the target tissue (see Smith et al. 1994; Banchereau et al. 1994 for reviews). The focus of this review is on two members of this family produced by activated T cells, the original lymphotoxin-α (LT-α, previously referred to as TNF-β), and a new member, lymphotoxin-β (LT-β), and their specific receptors. Initially discovered by cytotoxic activity in vitro, lymphotoxn, as a secreted molecule, was one of the earliest postulated mechanisms used by cytotoxic T lymphocytes (Ruddle and Waksman 1968; Granger and Williams 1868). The molecular cloning of LT and TNF dramatically revised the view of these cytokines as limited nonspecific cytotoxins and revealed their more intricate role in immunoregulation and host defense. Although once thought to be merely a redundant form of TNF, new findings have indicated that lymphotoxin has a role in immune physiology distinct from TNF and forms a system of secreted and membrane-anchored immunoregulatory molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y, Miyake M, Horiuchi A, Kimura S, Hitsumoto Y (1991) Expression of membrane-associated lymphotoxin/tumor necrosis factor-β on human lymphokine-activated killer cells. Jpn J Cancer Res 82: 23–26

    CAS  Google Scholar 

  • Abe Y, Horiuchi A, Osuka Y, Kimura S,.Granger GA, Gatanaga T (1992) Studies of membrane-associated and soluble (secreted) lymphotoxin in human lymphokine-activated T-killer cells in vitro. Lymphokine Cytokine Res 11: 115–121

    CAS  Google Scholar 

  • Aderka D, Engelmann H, Hornik V, Skornick Y, Levo Y, Wallach D, Kushtai G (1991) Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients. Cancer Res 51: 5602–5607

    PubMed  CAS  Google Scholar 

  • Aderka D, Engelmann H, Maor Y, Brakebusch C, Wallach D(1992) Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 175: 323–329

    Google Scholar 

  • Aderka D, Wysenbeek A, Engelmann H, Cope AP, Brennan F, Molad Y, Hornik V, Levo Y, Maini RN, Feldmann M et al. (1993)Correlation between serum levels of soluble tumor necrosis factor receptor and disease activity in systemic lupus erythematosus. Arthritis Rheum 36: 1111–1120

    Google Scholar 

  • Aggarwal BB, Moffat B, Harkins RN (1984) Lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J Biol Chem 259: 686–691

    PubMed  CAS  Google Scholar 

  • Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178: 2231–2235

    Google Scholar 

  • Alexander RB, Nelson WG, Coffey DS (1987) Synergistic enhancement by tumor necrosis factor of in vitro cytotoxicity from chemotherapeutic drugs targeted at DNA topoisomerase 11.Cancer Res 47: 2403–2406

    CAS  Google Scholar 

  • Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK et al. (1993) CD40 ligand gene defects responsible for X-linked hyper- IgM syndrome. Science 259: 990–993

    PubMed  CAS  Google Scholar 

  • Alvarez-Mon M, Garcia-Suarez J, Prieto A, Manzano L, Reyes E, Lorences C, Peraile G, Jorda J, Durantez A (1993) Heterogeneous proliferative effect of tumor necrosis factor-a and lymphotoxin on mitogen-activated B cells from B-chronic lymphocytic leukemia. Am J Hematol 43: 81–85

    PubMed  CAS  Google Scholar 

  • Ames R, Holskin B, Mitcho M, Shalloway D, Chen M (1990) Induction of sensitivity to the cytotoxic action of TNF α by adenovirus E1A is independent of transformation and transcriptional activation. J Virol 64: 4115–4122

    PubMed  CAS  Google Scholar 

  • Andersson U, Adolf G, Dohlsten M, Moller G, Sjogren HO (1989) Characterization of individual tumor necrosis factor a-and p-producing cells after polyclonal T cell activation, J Immunol Methods 123: 233–240

    PubMed  CAS  Google Scholar 

  • Andrews JS, Berger AE, Ware CF (1990) Characterization of the receptor for tumor necrosis factor (TNF) and lymphotoxin (LT) on human T lymphocytes. TNF and LT differ in their receptor binding properties and the induction of MHC class I proteins on a human CD4+ T cell hybridoma (published erratum appears in J Immunol, 1990, 144(12): 4906). J Immunol 144: 2582–2591

    CAS  Google Scholar 

  • Androlewicz MJ, Browning JL, Ware CF (1992) Lymphotoxin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma, J Biol Chem 267: 2542–2547

    PubMed  CAS  Google Scholar 

  • Armitage RJ, Fanslow WC, Strockbine Lf Sato TA, Clifford KN, Macduff BM, Anderson DM, Gimpel SD, Davis-Smith T, Maliszewski CR et al. (1992) Molecular and biological characterisation of a murine ligand for CD40. Nature 357: 80–82

    PubMed  CAS  Google Scholar 

  • Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, Bajorath J, Grosmaire LS, Stenkamp R, Neubauer M et al. (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72: 291–300

    PubMed  CAS  Google Scholar 

  • Ashkenazi A, Marsters SA, Capon DJ, Chamow SM, Figari IS, Pennica D, Goeddel DV, Palladino MA, Smith DH (1991) Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci USA 88: 10535–10539

    PubMed  CAS  Google Scholar 

  • Aversa G, Punnonen J, de Vries JE (1993) The 26-kD transmembrane form of tumor necrosis factor a on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation. J Exp Med 177: 1575–1585

    Google Scholar 

  • Baens M, Chaffanet M, Cassiman JJ, van den Berghe H, Marynen P (1993) Construction and evaluation of a hnc DNA library of human 12p transcribed sequences derived from a somatic cell hybrid. Genomics 16: 214–218

    PubMed  CAS  Google Scholar 

  • Baker E, Chen LZ, Smith CA, Callen DF, Goodwin R, Sutherland GR (1991) Chromosomal location of the human tumor necrosis factor receptor genes. Cytogenet Cell Genet 57: 117–118

    PubMed  CAS  Google Scholar 

  • Banchereau J, Bazan JF, Blanchard D, Briere F, Galizzi JP, Vankooten C, Liu YJ, Rousset F, Saeland S (1994) The CD40 antigen and its ligand. Annu Rev Immunol 12: 881–922

    PubMed  CAS  Google Scholar 

  • Banner DW, D’Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, Loetscher H, Lesslauer W (1993) Crystal structure of the soluble human 55 kd TNF receptor-human TNF β complex: implications for TNF receptor activation. Cell 73: 431–445

    PubMed  CAS  Google Scholar 

  • Barbara JA, Smith WB, Gamble JR, Van Ostade X, Vandenabeele P, Tavernier J, Fiers W, Vadas MA, Lopez AF (1994) Dissociation of TNF-α cytotoxic and proinflammatory activities by p55 receptor- and p75 receptor-selective TNF-a mutants. EM BO J 13: 843–850

    CAS  Google Scholar 

  • Barna BP, Barnett GH, Jacobs BS, Estes ML (1993) Divergent responses of human astrocytoma and non-neoplastic astrocytes to tumor necrosis factor a involve the 55 kDa tumor necrosis factor receptor. J Neuroimmunol 43: 185–190

    PubMed  CAS  Google Scholar 

  • Baum PR, Gayle RB, Ramsdell F, Srinivasan S, Sorensen RA, Watson ML, Seldin MF, Baker E, Sutherland GR, Clifford KN et al. (1994) Molecular characterization of murine and human 0X40/0X40 Ligand systems: identification of a human OX40 Ligand as the HTLV-1-regulated protein gp34. EMBO J 13: 3992–4001

    PubMed  CAS  Google Scholar 

  • Bazan JF (1993) Emerging families of cytokines and receptors. Curr Biol 3: 603–606

    PubMed  CAS  Google Scholar 

  • Benjamin D, Kofler G, Tschachler E (1992) Human B-cell TNF-β microheterogeneity. Lymphokine Cytokine Res 11: 45–54

    CAS  Google Scholar 

  • Berke G (1994) The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu Rev Immunol 12: 735–773

    PubMed  CAS  Google Scholar 

  • Beutler B (1990) Regulation of cachectin biosynthesis occurs at multiple levels. Prog Clin Biol Res 349: 229

    PubMed  CAS  Google Scholar 

  • Beutler B, Brown T (1993) Polymorphism of the mouse TNF-a locus: sequence studies of the 3’-untranslated region and first intron. Gene 129: 279–283

    PubMed  CAS  Google Scholar 

  • Beutler B, vanHuffel CO 994) Unraveling function in the TNF ligand and receptor families. Science 264: 667–668

    Google Scholar 

  • Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. FEBS Lett 340: 9–16

    PubMed  CAS  Google Scholar 

  • Beyaert R, Heyninck K, De Valck D, Boeykens F, van Roy F, Fiers W (1993a) Enhancement of tumor necrosis factor cytotoxicity by lithium chloride is associated with increased inositol phosphate accumulation. J Immunol 151: 291–300

    PubMed  CAS  Google Scholar 

  • Bayaert R, Vanhaesebroeck B, Heyninck K, Boone E, De Valck D, Schulze-Osthoff K, Haegeman G, van Roy F, Fiers W (1993b) Sensitization of tumor cells to tumor necrosis factor action by the protein kinase inhibitor staurosporine. Cancer Res 53: 2623–2630

    Google Scholar 

  • Boss J, Laster S, Gooding L (1991) Sensitivity to tumour necrosis factor-mediated cytolysis is unrelated to manganous superoxide dismutase messenger RNA levels among transformed mouse fibroblasts. Endocrinology 73: 309–315

    CAS  Google Scholar 

  • Boussiotis VA, Nadler LM, Strominger JL, Goldfeld AE (1994) Tumor necrosis factor is an autocrine growth factor for normal human B cells. Proc Natl Acad Sci USA 91: 283–288

    Google Scholar 

  • Bradshaw RA, Blundell TL, Lapatto R, McDonald NQ, Murray-Rust J (1993) Nerve growth factor revisited. Trends Biochem Sci 18: 48–52

    PubMed  CAS  Google Scholar 

  • Brakebusch C, Nophar Y, Kemper O, Engelmann H, Wallach D (1992) Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. EMBO J 11: 943–950

    PubMed  CAS  Google Scholar 

  • Brockhaus M, Bar-Khayim Y, Gunwicz S, Frensdorff A, Haran N (1992) Plasma tumor r necrosis factor soluble receptors in chronic renal failure. Kidney Int 42: 663–667

    PubMed  CAS  Google Scholar 

  • Browning JL. Ribolini A (1989) Studies on the differing effects of tumor necrosis factor and lymphotoxin on the growth of several human tumor lines. J Immunol 143: 1859–1867

    PubMed  CAS  Google Scholar 

  • Browning JL, Androlewics MJ, Ware CF (1991) Lymphotoxin and an associated 33-kDa glycoprotein are expressed on the surface of an activated human T cell hybridoma. J Immunol 147: 1230–1237

    PubMed  CAS  Google Scholar 

  • Browning JL, Ngam-ek A, Lawton P.De Marinis J, Tizard R.Chow EP, Hession C.O’Brine-Greco. B, Foley SF. Ware CF (1993) Lymphotoxin. a novel member of the TmF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72: 847–856

    PubMed  CAS  Google Scholar 

  • Browning JL. Douglas I, Ngam-ek A, Bourdon P. Ehrenfels B, Miatkowski K. Zafari M. Yampaglia A, Lawton P, Meier W, Benjamin C, Hession C (1995) Characterization of surface lymphotoxin forms: use of specific monoclonal antibodies and soluble receptors. J Immunol (in press)

    Google Scholar 

  • Callard RE, Armitage RJ,.Fanslow WC, Spriggs MK (1993) CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today 14: 559–564

    Google Scholar 

  • Camerini D, Walz G, Loenen WA, Borst J, Seed B(1991) The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol 147: 3165–3169

    Google Scholar 

  • Cheng J. Zhou T, Liu C, Shapiro JP, Brauer MJ. Kiefer MC, Barr PJ. Mountz JD (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263: 1759–1762

    Google Scholar 

  • Coffman FD, Green LM, Godwin A, Ware CF (1989a) Cytotoxity mediated by tumor necrosis factor in variant subclones of the ME-180 cervical carcinoma line: modulation by specific inhibitors of DNA topoisomerase II. J Cell Blochem 39: 95–105

    CAS  Google Scholar 

  • Collins T, Lapierre LA, Fiers W, Strominger JL, Pober JS (1986) Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-A. B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci USA 83: 446-–450

    Google Scholar 

  • Cope AP, Aderka D, Doherty M,.Engelmann H,.Gibbons D, Jones AC, Brennan FM, Maini RN, Wallach D, Feldmann M (1992) Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. Arthritis Rheum 335: 160–1169

    Google Scholar 

  • Crowe PD, Van Arsdale TL, Goodwin RG, Ware CF (1993) Specific induction of 80-kDa tumor necrosis factor receptor shedding in T lymphocytes involves the cytoplasmic domain and phosphorylation. J Immunol 151: 6882–6890

    PubMed  CAS  Google Scholar 

  • Crowe PD Van Arsdale TL, Walter BN, Dahms KM, Ware CF (1994a) Production of lymphotoxin (LT) and a soluble dimeric form of its receptor using the baculovirus expression system. J Immunol Methods 168: 79–89

    PubMed  CAS  Google Scholar 

  • Crowe PD, Van Arsdale TL, Walter BN. Ware CF, Hession C, Ehrenfels B, Browning JL, Din WS, Goodwin RG Smith CA (1994b) A lymphotoxinn-β-specific receptor. Science 264: 707–710

    PubMed  CAS  Google Scholar 

  • Crowe PD, Walter BN, Mohler KM, Otten-Evans C, Black RA, Ware CF (1995) A metalloprotease inhibitor blocks shedding of the 80 kDa TNF receptor and TNF processing in T lymphocytes. J Exp Med (in press)

    Google Scholar 

  • Crump WL, Owen-Schaub LB, Grimm EA (1990) Molecular identification of the human tumor necrosis factor receptor on interleukin-2-stimulated peripheral blood lymphocytes. Cell Immunol 131: 150–158

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Williamson B, Carswell EA, Old LJ (1984) Cell cycle-specific effects of tumor necrosis factor. Cancer Res 44: 83–90

    PubMed  CAS  Google Scholar 

  • Davidson WF, Dumont FJ, Bedigian HG, Fowlkes BJ, Morse HC (1986) Phenotypic, functional, and molecular genetic comparisons of the abnormal lymphoid cells of C3H-lpr/lpr and C3H-gld/gld mice. J Immunol 136: 4075–4084

    PubMed  CAS  Google Scholar 

  • Davies AM (1994) Neurobiology. Tracking neurotrophin function (news; comment). Nature 368: 193–194

    PubMed  CAS  Google Scholar 

  • Deleuran BW, Chu CQ, Field M, Brennan FM, Mitchell T, Feldmann M, Maini RN (1992) Localization of tumor necrosis factor receptors in the synovial tissue and cartilage-pannus junction in patients with rheumatoid arthritis. Implications for local actions of tumor necrosis factor α Arthritis Rheum 35: 1170–1178

    PubMed  CAS  Google Scholar 

  • Derre J, Kemper O, Cherif D, Nophar Y, Berger R, Wallach D (1991) The gene for the type 1 tumor necrosis factor receptor (TNF-R1) is localized on band 12p13. Hum Genet 87: 213–233

    Google Scholar 

  • De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, Russell JH, Karr R, Chaplin DD (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264: 703–706

    PubMed  Google Scholar 

  • De Valck D, Beyaert R, van Roy F, Fiers W (1993) Tumor necrosis factor cytotoxicity is associated with phospholipase D activation. Eur J Biochem 212: 491–497

    PubMed  Google Scholar 

  • Di Santo JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G (1993) CD40 ligand mutations in x-linked immunodeficiency with hyper-lgM. Nature 361: 541–543

    Google Scholar 

  • Di Stefano PS, Johnson EM Jr (1988) Identification of a truncated form of the nerve growth factor receptor. Proc Natl Acad Sci USA 85: 270–274

    Google Scholar 

  • Doherty PC (1993) Cell-mediated cytotoxicity. Cell 75: 607–612

    PubMed  CAS  Google Scholar 

  • Duerksen-Hughes P, Wold WS, Gooding LR (1989) Adenovirus E1A renders infected cells sensitive to cytolysis by tumor necrosis factor. J Immunol 143: 4193–4200

    PubMed  CAS  Google Scholar 

  • Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68: 421–427

    PubMed  CAS  Google Scholar 

  • Eck MJ, Sprang SR (1989) The structure of tumor necrosis factor-α at 2.6 A resolution. Implications for for receptor binding. J Biol Chem 264: 17595–17605

    PubMed  CAS  Google Scholar 

  • Eck MJ, Beutler B, Kuo G, Merryweather JP, Sprang SR (1988) Crystallization of trimeric recombinant human tumor necrosis factor (cachectin). J Biol Chem 263: 12816–12819

    PubMed  CAS  Google Scholar 

  • Eck MJ, Ultsch M, Rinderknecht E, de Vos AM, Sprang SR (1992) The structure of human lymphotoxin (tumor necrosis factor-β) at 1.9-A resolution. J Biol Chem 267: 2119–2122

    CAS  Google Scholar 

  • Engelmann H, Holtmann H, Brakebusch C, Avni YS, Sarov I, Nophar Y, Hadas E, Leitner O, Wallach D (1990a) Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J Biol Chem 265: 14497–14504

    PubMed  CAS  Google Scholar 

  • Engelmann H, Novick D, Wallach D (1990b) Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 265: 1531–1536

    PubMed  CAS  Google Scholar 

  • Erikstein BK, Smeland EB, Blomhoff HK, Funderud S, Prydz K, Lesslauer W(Espevik T (1991) Independent regulation of 55-kDa and 75-kDa tumor necrosis factor receptors during activation of human peripheral blood B lymphocytes. Eur J Immunol 21: 1033–1037

    CAS  Google Scholar 

  • Espevik T, Brockhaus M, Loetscher H, Nonstad U, Shalaby R (1990) Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J Exp Med 171: 415–426

    PubMed  CAS  Google Scholar 

  • EstrovZ, Kurzrock R, Pocsike, Pathak S, Kantarjian HM, Zipf TF, Harris D, Talpaz M, Aggarwal BB (1993) Lymphotoxin is an autocrine growth factor for Epstein-Barr virus-infected B cell lines. J Exp Med 177: 763–774

    Google Scholar 

  • Farrah T, Smith CA (1992) Emerging cytokine family (letter). Nature 358: 26

    PubMed  CAS  Google Scholar 

  • Farrington M, Grosmaire LS, Nonoyama S, Fischer SH, Hollenbaugh D, Ledbetter JA, Noelle RJ, Aruffo A, Ochs HD (1994) CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci USA 91: 1099–1103

    PubMed  CAS  Google Scholar 

  • Fashena SJ, Tang WL, Sarr T, Ruddle NH (1990) The murine lymphotoxin gene promoter. Characterization and negative regulation. J Immunol 145: 177–183

    PubMed  CAS  Google Scholar 

  • Fukushima K, Watanabe H, Takeo K, Nomura M, Asahi T, Yamashita K (1993) N-linked sugar chain structure of recombinant human lymphotoxin produced by CHO cells: the functional role of carbohydrate as to its lectin-like character and clearance velocity. Arch Biochem Biophys 304: 144–153

    PubMed  CAS  Google Scholar 

  • Gatanaga T, Hwang CD, Kohr W, Cappuccini F, Lucci JA, Jeffes EW, Lentz R, Tomich J, Yamamoto RS, Granger GA (1990) Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients. Proc Natl Acad Sci USA 87: 8781–8784

    PubMed  CAS  Google Scholar 

  • Godfried MH, Van der Poll T, Jansen J, Romijin JA, Schattenkerk JK, Endert E, van Deventer SJ, Sauerwein HP (1993) Soluble receptors for tumour necrosis factor: a putative marker of disease progression in HIV infection. AIDS 7: 33–36

    PubMed  CAS  Google Scholar 

  • Goh C, Porter A (1991) Structural and functional domains in human tumour necrosis factors. Protein Eng 4: 385–389

    PubMed  CAS  Google Scholar 

  • Goh CR (1993) Protein engineering of tumor necrosis factor-β and its applications in cancer, septicemia and cachexia. Ann Acad Med Singapore 22: 651

    PubMed  CAS  Google Scholar 

  • Goh CR, Loh CS Porter AG (1991) Aspartic acid 50 and tyrosine 108 are essential for receptor binding and cytotoxic activity of tumour necrosis factor β (lymphotoxin). Protein Eng 4: 785–791

    PubMed  CAS  Google Scholar 

  • Golstein P, Ojcius DM, Young JD (1991) Cell death mechanisms and the immune system. Immunol Rev 121: 29–65

    PubMed  CAS  Google Scholar 

  • Gooding LR (1992) Virus proteins that counteract host immune defenses. Cell 71: 5–7

    PubMed  CAS  Google Scholar 

  • Gooding LR, Sofola IO, Tollefson AE, Duerksen-Hughes P, Wold WS (1990) The adenovirus E3-14.7K protein is a general inhibitor of tumor necrosis factor-mediated cytolysis. J Immunol 145: 3080–3086

    PubMed  CAS  Google Scholar 

  • Goodwin RG, Alderson MR, Smith CA, Armitage RJ, Van den Bos T, Jerzy R, Tough TW, Schoenborn MA, Davis-Smith T, Hennen K et al. (1993a) Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 73: 447–456

    PubMed  CAS  Google Scholar 

  • Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA, Maliszewski CR, Brannan CI, Copeland NG, Jenkins NA et al. (1993b) Molecular cloning of a ligand for the inducible T cell gene 4- 1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol 23: 2631–2641

    PubMed  CAS  Google Scholar 

  • Goppelt-Struebe M, Rehfeldt W (1992) Glucocorticoids inhibit TNF α-induced cytosolic phospholipase A2 activity. Biochim Biophys Acta 1127: 163–167

    PubMed  CAS  Google Scholar 

  • Granger GA, Williams TW (1968) Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature 218: 1253–1254

    PubMed  CAS  Google Scholar 

  • Gray P, Aggarwal B, Benton C, Bringman T, Henzel W, Jarrett J, Leung D, Moffat B, Ng P, Svedersky L, Palladino M, Nedwin G (1984) Cloning and expression of the cDNA for human lyphotoxin: a Symphokine with tumor necrosis activity. Nature 312: 721–724

    PubMed  CAS  Google Scholar 

  • Greenblatt MS, Elias L (1992) The type B receptor for tumor necrosis factor-α mediates DNA fragmentation in HL-60 and U937 cells and differentiation in HL-60 cells. Blood 80: 1339–1346

    PubMed  CAS  Google Scholar 

  • Gullberg U, Lantz M, Lindvall L, Olsson I, Himmler A (1992) Involvement of an AsnA/al cleavage site in the production of a soluble form of a human tumor necrosis factor (TNF) receptor. Site-directed mutagenesis of a putative cleavage site in the p55 TNF receptor chain. Eur J Cell Biol 58: 307–312

    PubMed  CAS  Google Scholar 

  • Hains JM, Aggarwal BB (1989) Characterization of recombinant human lymphotoxin (tumor necrosis factor-β) produced by a mammalian cell line. Arch Biochem Biophys 274: 417–425

    PubMed  CAS  Google Scholar 

  • Heller R, Song K, Fan N, Chang D (1992) The p70 tumor necrosis factor receptor mediates cytotoxicity. Cell 70: 47–56

    PubMed  CAS  Google Scholar 

  • Heller RA, Song K, Onasch MA, Fischer WH, Chang D, Ringold GM (1990) Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc Natl Acad Sci USA 87: 6151–6155

    PubMed  CAS  Google Scholar 

  • Hennet T, Bertoni G, Richter C, Peterhans E (1993) Expression of BCL-2 protein enhances the survival of mouse fibrosarcoid cells in TNF-mediated cytotoxicity. Cancer Res 53: 1456–1460

    PubMed  CAS  Google Scholar 

  • Hepburn A, Demolle D, Boeynaems JM, Fiers W, Dumont JE (1988) Rapid phosphorylation of a 27 kDa protein induced by tumor necrosis factor. FEBS Lett 227: 175–178

    PubMed  CAS  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977–987

    PubMed  CAS  Google Scholar 

  • Higuchi M, Aggarwal BB (1992) Modulation of two forms of tumor necrosis factor receptors and their cellular response by soluble receptors and their monoclonal antibodies. J Biol Chem 267: 20892–20899

    PubMed  CAS  Google Scholar 

  • Higuchi M, Aggarwal BB (1993) Okadaic acid induces down-modulation and shedding of tumor necrosis factor receptors. Comparison with another tumor promoter, phorbol ester. J Biol Chem 268: 5624–5631

    PubMed  CAS  Google Scholar 

  • Higuchi M, Aggarwal BB (1994) TNF induces internalization of the p60 receptor and shedding of the p80 receptor. J Immunol 152: 3550–3558

    PubMed  CAS  Google Scholar 

  • Hirahara H, Ogawa M, Kimura M, Liai T, Tsuchida M, Hanawa H, Watanabe H, Abo T (1994) Glucocorticoid independence of acute thymic involution induced by lymphotoxin and estrogen. Cell Immunol 153: 401–411

    PubMed  CAS  Google Scholar 

  • Hoeck WG, Ramesha CS, Chang DJ, Fan N, Heller RA (1993) Cytoplasmic phospholipase A2 activity and gene expression are stimulated by tumor necrosis factor: dexamethasone blocks the induced synthesis. Proc Natl Acad Sci USA 90: 4475–4479

    PubMed  CAS  Google Scholar 

  • Hohmann H, Remy R, Aigners L, Brockhaus M, van Loon APG (1992) Protein kinases negatively affect nuclear factor-kB activation by tumor necrosis factor-α at two different stages in promyelocytic HL60 cells. J Biol Chem 267: 2065–2072

    PubMed  CAS  Google Scholar 

  • Hohmann HP, Brockhaus M, Baeuerle PA, Remy R, Kolbeck R, van Loon AP (1990a) Expression of the types A and B tumor necrosis factor (TNF) receptors is independently regulated, and both receptors mediate activation of the transcription factor NF-kB. TNF α is not needed for induction of a biological effect via TNF receptors. J Biol Chem 265: 22409–122417

    Google Scholar 

  • Hohmann HP, Remy R, Poschl B, van Loon AP (1990b) Tumor necrosis factors-α and -β bind to the same two types of tumor necrosis factor receptors and maximally activate the transcription factor NF-KB at low receptor occupancy and within minutes after receptor binding. J Biol Chem 265: 15183–15188

    PubMed  CAS  Google Scholar 

  • Hollenbaugh D, Grosmaire L, Kullas C, Chaluphny N, Braesch-Andersen S, Noelle R, Stamenkovic I, Ledbetter J, Aruffo A (1992) The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J 11: 4313–4321

    PubMed  CAS  Google Scholar 

  • Hwang C, Gatanaga M, Granger GA, Gatanaga T (1993) Mechanism of release of soluble forms of tumor necrosis factor/lymphotoxin receptor by phorbol myristate acetate-stimulated human THP-1 cells in vitro. J Immunol 151: 5631–5638

    PubMed  CAS  Google Scholar 

  • Ikegami H, Kawaguchi Y, Ueda H, Fukuda M, Takakawa K, Fujioka Y, Fujisawa T, Uchida K, Ogihara T (1993) MHC-linked diabetogenic gene of the NOD mouse: molecular mapping of the 3’ boundary of the diabetogenic region. Biochem Biophys Res Commun 192: 677–682

    PubMed  CAS  Google Scholar 

  • Imamura K, Sherman ML, Spriggs D, Kufe D (1988) Effect of tumor necrosis factor on GTP binding and GTPase activity in HL-60 and L929 cells. J Biol Chem 263: 10247–10253

    PubMed  CAS  Google Scholar 

  • Itoh N, Nagata S (1993) A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937

    PubMed  CAS  Google Scholar 

  • Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243

    PubMed  CAS  Google Scholar 

  • Itoh N, Tsujimoto Y, Nagata S (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J Immunol 151: 621–627

    PubMed  CAS  Google Scholar 

  • Jacob CO (1992) Tumor necrosis factor a in autoimmunity: pretty girl or old witch? Immunol Today 13: 122–125

    PubMed  CAS  Google Scholar 

  • Jacob CO, Hwang F (1992) Definition of microsatellite size variants for Tnfa and Hsp70 in autoimmune and nonautoimmune mouse strains. Immunogenetics 36: 182–188

    PubMed  CAS  Google Scholar 

  • Jacob CO, McDevitt HO (1991a) Genetic predisposition to autoimmune diseases: the contribution of the major histocompatibility complex. In: Talal N (ed) Molecular autoimmunity. Academic, New York, P7

    Google Scholar 

  • Jacob CO, McDevitt HO (1991b) Interferon gamma and tumor necrosis factor in autoimmune disease models: implications for immunoregulation and genetic susceptibility. In: Talal N (ed) Molecular autoimmunity. Academic, New York, p 107

    Google Scholar 

  • Jacob CO, Tashman NB (1993) Disruption in the AU motif of the mouse TNF-a3’ UTR correlates with reduced TNF production by macrophages in vitro. Nucleic Acids Res 21: 2761–2766

    PubMed  CAS  Google Scholar 

  • Janssen O, Gillis S, Kabelitz D (1990) In vitro transformation by Epstein-Barr virus induces a switch in growth factor and anti-IgM responsiveness in a human leukemic B cell clone. Eur J Immunol 20: 7–14

    PubMed  CAS  Google Scholar 

  • Jones EY, Stuart Dl, Walker NP (1989) Structure of tumour necrosis factor. Nature 338: 225–228

    PubMed  CAS  Google Scholar 

  • Jones EY, Stuart Dl, Walker NP (1992) Crystal structure of TNF, Immunol Ser 56: 93–127

    PubMed  CAS  Google Scholar 

  • Jongeneel CV, Briant L, Udalova IA, Sevin A, Nedospasov SA, Cambon-Thomsen A (1991) Extensive genetic polymorphism in the human tumor necrosis factor region and relation to extended HLA haplotypes. Proc Natl Acad Sci USA 88: 9717–9721

    PubMed  CAS  Google Scholar 

  • Josimovic-Alasevic O, Durkop H, Schwarting R, Backe E, Stein H, Diamantstein T (1989) Ki-1 (CD30) antigen is released by Ki-1 -positive tumor cells in vitro and in vivo. I. Partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme- linked immunosorbent assay. Eur J Immunol 19: 157–162

    PubMed  CAS  Google Scholar 

  • Kagan BL, Baldwin RL, Munoz D, Wisnieski BJ (1992) Formation of ion-permeable channels by tumor necrosis factor-α Science 255: 1427–1430

    PubMed  CAS  Google Scholar 

  • Kehrl JH, Alvarez-Mon M, Delsing GA, Fauci AS (1987) Lymphotoxin is an important T cell-derived growth factor for human B cells. Science 238: 1144–1146

    PubMed  CAS  Google Scholar 

  • Kim MY, Linardic C, Obeid L, Hannun Y (1991) Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor a and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266: 484–489

    PubMed  CAS  Google Scholar 

  • Kohno T, Brewer MT, Baker SL, Schwartz PE, King MW, Hale KK, Squires CH, Thompson RC, Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P (1994) Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265: 528–530

    Google Scholar 

  • Kuramoto T, Mashimo T, Koike R, Miyawaki S, Yamada J, Miyasaka M, Serikawa T (1994) The alymphoplasia (aly) mutation co-segrates with the intercellular adhesion molecule-2 (ICAM+2) on mouse chromosome II. International Immunol 6: 991–994

    CAS  Google Scholar 

  • Vannice JL (1990) A second tumor necrosis factor receptor gene product can shed a naturally occurring tumor necrosis factor inhibitor. Proc Natl Acad Sci USA 87: 8831–8335

    Google Scholar 

  • Kolanus W, Romeo C, Seed B (1993) T cell activation by clustered tyrosine kinases. Cell 74: 171–183

    PubMed  CAS  Google Scholar 

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77: 325–328

    PubMed  CAS  Google Scholar 

  • Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RJ, Kroczek RA (1993) Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-lgM. Nature 361: 539–541

    PubMed  CAS  Google Scholar 

  • Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53: 45–53

    PubMed  CAS  Google Scholar 

  • Kruppa G, Thoma B, Machleidt T, Wiegmann K, Kronke M (1992) Inhibition of tumor necrosis factor (TNF)-mediated NF-KB activation by selective blockade of the human 55-kDa TNF receptor. J Immunol 148: 3152–3157

    PubMed  CAS  Google Scholar 

  • Kumar S, Baglioni C (1991) Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-2. J Biol Chem 266: 20960–20964

    PubMed  CAS  Google Scholar 

  • Kusumi A, Abo T, Masuda T, Sugiura K, Seki S, Ohteki T, Okuyama R, Kumagai K (1992) Lymphotoxin activates hepatic T cells and simultanously induces profound thymic atrophy. Immunology 77: 177–184

    PubMed  CAS  Google Scholar 

  • Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 86: 1963–1967

    Google Scholar 

  • Lantz M, Gullberg U, Nilsson E, Olsson I (1990) Characterization in vitro of a human tumor necrosis factor-binding protein. A soluble form of a tumor necrosis factor receptor. J Clin Invest 86: 1342–1396

    Google Scholar 

  • Lantz M, Lindvall L, Pantazis P, Olsson I (1991) Lymphotoxin produced by human B- and T-cell lines appears in two distinct forms. Mol Immunol 28: 9–16

    PubMed  CAS  Google Scholar 

  • Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141: 2629–2634

    PubMed  CAS  Google Scholar 

  • Latza U, Durkop H, Schnittger S, Ringeling J, Eitelbach F, Hummel M, Fonatsch C, Stein H (1994) The human 0X40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur J Immunol 24: 677–683

    PubMed  CAS  Google Scholar 

  • Lederman S, Yellin MJ, Cleary AM, Pernis A, Inghirami G, Cohn LE, Covey LR, Lee JJ, Rothman P, Chess L (1994) T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. J Immunol 152: 2163–2171

    PubMed  CAS  Google Scholar 

  • Leithauser F, Dhein J, Mechtersheimer G, Koretz K, Bruderlein S, Henne C, Schmidt A, Debatin KM, Krammer PH, Moller P (1993) Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 69: 415–429

    PubMed  CAS  Google Scholar 

  • Lichtenstein A, Gera JF, Andrews J, Berenson J, Ware CF (1991) Inhibitors of ADP-ribose polymerase decrease the resistance of HER2/neu-expressing cancer cells to the cytotoxic effects of tumor necrosis factor. J Immunol 146: 2052–2058

    PubMed  CAS  Google Scholar 

  • Liu AY, Miskovsky EP, Stanhope PE, Siliciano RF (1992) Production of transmembrane and secreted forms of tumor necrosis factor (TNF)-α by HIV-1-specific CD4+ cytolytic T lymphocyte clones. Evidence for a TNF-a-independent cytolytic mechanism. J Immunol 148: 3789–3798

    PubMed  CAS  Google Scholar 

  • Liu J, Mathias S, Yang Z, Kolesnick RN (1994) Renaturation and tumor necrosis factor-a stimulation of α 97-kDa ceramide-activated protein kinase. J Biol Chem 269: 3047–3052

    PubMed  CAS  Google Scholar 

  • Loenen WA, de Vries E, Gravestein LA, Hintzen RQ, van Lier RA, Borst J (1992a) The CD27 membrane receptor, a lymphocyte-specific member of the nerve growth factor receptor family, gives rise to a soluble form by protein processing that does not involve receptor endocytosis. Eur J Immunol 22: 447–455

    PubMed  CAS  Google Scholar 

  • Loenen WA, Gravestein LA, Beumer S, Melief CJ, Hagemeijer A, Borst J (1992b) Genomic organization and chromosomal localization of the human CD27 gene. J Immunol 149: 3937–3943

    PubMed  CAS  Google Scholar 

  • Loetscher H, Pan Y, Lahm H, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61: 351–359

    PubMed  CAS  Google Scholar 

  • Loetscher H, Gentz R, Zulauf M, Lustig A, Tabuchi H, Schlaeger EJ, Brockhaus M, Gallati H, Manneberg M, Lesslauer W (1991) Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF α and TNF ß and inhibition of TNF activity. J Biol Chem 266: 18324–18329

    PubMed  CAS  Google Scholar 

  • Loetscher H, Stueber D, Banner D, Mackay F, Lesslauer W (1993) Human tumor necrosis factor a (TNF-a) mutants with exclusive specificity for the 55-kDa or 75-kDa TNF receptors. J Biol Chem 268: 26350–26357

    PubMed  CAS  Google Scholar 

  • Lucas R, Magez S, De Leys R, Fransen L, Scheerlinck JP, Rampelberg M, Sablon E, De Baetselier P (1994) Mapping the lectin-like activity of tumor necrosis factor. Science 263: 814–817

    PubMed  CAS  Google Scholar 

  • Macchia D, Almerigogna F, Parronchi P, Ravina A, Maggi E, Romagnani S (1993) Membrane tumour necrosis factor-α is involved in the polyclonal B-cell activation induced by HIV-infected human T cells. Nature 363: 464–466

    PubMed  CAS  Google Scholar 

  • Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis factor a (TNF-a)- induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177: 1277–1286

    PubMed  CAS  Google Scholar 

  • Mallett S, Fossum S, Barclay AN (1990) Characterization of the MRC 0X40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve growth factor receptor. EMBO J 9: 1063–1068

    PubMed  CAS  Google Scholar 

  • Marx J (1993) Cell communication failure leads to immune disorder. Science 259: 896–897

    PubMed  CAS  Google Scholar 

  • Massung RF, Esposito JJ, Liu LI, Qi J, Utterback TR, Knight JC, Aubin L, Yuran TE, Parsons JM, Loparev VN et al. (1993) Potential virulence determinants in terminal regions of variola smallpox virus genome. Nature 366: 748–751

    PubMed  CAS  Google Scholar 

  • Massung RF, Liu L, Qi J, Knight JC, Yuran TE, Kerlavage AR, Parsons JM, Venter JC, Esposito JJ Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201: 215–240

    Google Scholar 

  • Mathias S, Dressier KA, Kolesnick RN (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor α. Proc Natl Acad Sci USA 88: 10009–10013

    PubMed  CAS  Google Scholar 

  • McDonald NQ, Hendrickson WA (1993) A structural superfamily of growth factors containing a cysteine knot motif. Cell 73: 421–424

    PubMed  CAS  Google Scholar 

  • McDonald NQ, Lapatto R, Murrary-Rust J, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 354: 411–414

    PubMed  CAS  Google Scholar 

  • Melani C, Silvani A, Parmiani G, Colombo MP (1993) Lymphotoxin gene expression by melanocytes and melanoma cell lines and persistence of unspliced mRNA. FEBS Lett 335: 114–118

    PubMed  CAS  Google Scholar 

  • Messer G, Spengler U, Jung MC, Honold G, Blomer K, Pape GR, Riethmuller G, Weiss EH (1991) Polymorphic structure of the tumor necrosis factor (TNF) locus: an Ncol polymorphism in the first intron of the human TNF-(3 gene correlates with a variant amino acid in position 26 and a reduced level of TNF-β production. J Exp Med 173: 209–219

    PubMed  CAS  Google Scholar 

  • Milatovich A, Song K, Heller RA, Francke U (1991) Tumor necrosis factor receptor genes, TNFR1 and TNFR2, on human chromosomes 12 and 1. Somat Cell Mol Genet 17: 519–523

    PubMed  CAS  Google Scholar 

  • Millet I, Ruddle NH (to be published) Differential regulation of lymphotoxin (LT), lymphotoxin-β (LT-β) and tumor necrosis factor (TNF-α) in murine T cell clones activated through the T cell receptor. J Immunol

    Google Scholar 

  • Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, Shibata Y (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24: 429–434

    PubMed  CAS  Google Scholar 

  • Naume B, Shalaby R, Lesslauer W, Espevik T (1991) Involvement of the 55- and 75-kDa tumor necrosis factor receptors in the generation of lymphokine-activated killer cell activity and proliferation of natural killer cells. J Immunol 146: 3045–3048

    PubMed  CAS  Google Scholar 

  • Nophar Y, Kemper O, Brakebusch C, Englemann H, Zwang R, Aderka D, Holtmann H, Wallach D (1990) Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor. EMBO J 9: 3269–3278

    PubMed  CAS  Google Scholar 

  • Olsson L, Lantz M, Nilsson E, Peetre C, Thysell H, Grubb A, Adolf G (1989) Isolation and characterization of a tumor necrosis factor binding protein from urine. Eur J Haematol 42: 270–275

    PubMed  CAS  Google Scholar 

  • Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59: 1203–1211

    PubMed  CAS  Google Scholar 

  • Ostergaard HL, Clark WR (1989) Evidence for multiple lytic pathways used by cytotoxic T lymphocytes. J. Immunol 143: 2120–2126

    PubMed  CAS  Google Scholar 

  • Paul NL, Ruddle NH (1988) Lymphotoxin. Annu Rev Immunol 6: 407–438

    PubMed  CAS  Google Scholar 

  • Peitsch MC, Jongeneel CV (1993) A 3-D model for the CD40 ligand predicts that it is compact trimer similar to the tumor necrosis factors. Int Immunol 5: 233–238

    PubMed  CAS  Google Scholar 

  • Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV (1984) Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729

    PubMed  CAS  Google Scholar 

  • Pennica D, Kohr W, Fendly B, Shire S, Raab H, Borchardt P, Lewis M, Goeddel D (1992a) Characterization of a recombinant extracellular domain of the type 1 tumor necrosis factor receptor: evidence for tumor necrosis factor-α induced receptor aggregation. Biochemistry 31: 1134–1141

    PubMed  CAS  Google Scholar 

  • Pennica D, Lam VT, Mize NK, Weber RF, Lewis M, Fendly BM, Lipari MT, Goeddel DV (1992b) Biochemical properties of the 75-kDa tumor necrosis factor receptor. Characterization of ligand binding, internalization, and receptor phosphorylation. J Biol Chem 267: 21172–21178

    PubMed  CAS  Google Scholar 

  • Pennica D, Lam VT, Weber RF, Kohr WJ, Basa LJ, Spellman MW, Ashkenazi A, Shire SJ, Goeddel DV (1993) Biochemical characterization of the extracellular domain of the 75-kilodalton tumor necrosis factor receptor. Biochemistry 32: 3131–3138

    PubMed  CAS  Google Scholar 

  • Peppel K, Crawford D, Beutler B (1991) A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 174: 1483–1489

    PubMed  CAS  Google Scholar 

  • Peppel K, Poltorak A, Melhado I, Jirik F, Beutler B (1993) Expression of a TNF inhibitor in transgenic mice. J Immunol 151: 5699–5703

    PubMed  CAS  Google Scholar 

  • Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M (1990) A nonsecretable cell surface mutant of tumor necrosis fator (TNF) kills by cell-to-cell contact. Cell 63: 251–258

    PubMed  CAS  Google Scholar 

  • Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Kronke M, Mak TW (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457–467

    PubMed  CAS  Google Scholar 

  • Podack ER, Hengartner H, Lichtenheld MG (1991) A central role of perforin in cytolysis? Annu Rev Immunol 9: 129–157

    PubMed  CAS  Google Scholar 

  • Porteu F, Hieblot C (1994) Tumor necrosis factor induces a selective shedding of its p75 receptor from human neutrophils. J Biol Chem 269: 2834–2840

    PubMed  CAS  Google Scholar 

  • Porteu F, Nathan C (1990) Shedding of tumor necrosis factor receptors by activated human neutrophils. J Exp Med 172: 599–607

    PubMed  CAS  Google Scholar 

  • Powell MB, Mitchell D, Lederman J, Buckmeier J, Zamvil SS, Graham M, Ruddle NH, Steinman L (1990) Lymphotoxin and tumor necrosis factor-a production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol 2: 539–544

    PubMed  CAS  Google Scholar 

  • Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM, Butcher LL, Bredesen DE (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261: 345–348

    PubMed  CAS  Google Scholar 

  • Ratner A, Clark WR (1993) Role of TNF-a in CD8+ cytotoxic T lymphocyte-mediated lysis. J Immunol 150: 4303–4314

    PubMed  CAS  Google Scholar 

  • Reid T, Ramesha C, Ringold G (1991) Resistance to killing by tumor necrosis factor in an adipocyte cell line caused by a defect in arachidonic acid biosynthesis. J Biol Chem 266: 16580–16586

    PubMed  CAS  Google Scholar 

  • Robinet E, Branellec D, Termijtelen AM, Blay JY, Gay F, Chouaib S (1990) Evidence for tumor necrosis factor-α involvement in the optimal induction of class I allospecific cytotoxic T cells. J Immunol 144: 4555–4561

    PubMed  CAS  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis, Science 234: 364–368

    PubMed  CAS  Google Scholar 

  • Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H (1993) Mice lacking the tumour necrosis factor receptor I are resistant to TNF- mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364: 798–802

    PubMed  CAS  Google Scholar 

  • Rouvier E, Luciani MF, Golstein P (1993) Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J Exp Med 177: 195–200

    PubMed  CAS  Google Scholar 

  • Ruddle NH (1992) Tumor necrosis factor (TNF-α) and lymphotoxin (TNF-β). Curr Opin Immunol 4: 327–332

    PubMed  CAS  Google Scholar 

  • Ruddle NH, Homer R (1988) The role of lymphotoxin in inflammation. Proc Allergy 40: 162

    CAS  Google Scholar 

  • Ruddle NH, Waksman BH (1968) Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. I. Characterization of the phenomenon. J Exp Med 128: 1237–1254

    PubMed  CAS  Google Scholar 

  • Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172: 1193–1200

    PubMed  CAS  Google Scholar 

  • Ryffel B, Mihatsch MJ (1993) TNF receptor distribution in human tissues. Int Rev Exp Pathol 34 Pt B: 149–156

    Google Scholar 

  • Ryffel B, Brockhaus M, Durmuller U, Gudat F (1991) Tumor necrosis factor receptors in lymphoid tissues and lymphomas. Am J Pathol 139: 7–15

    PubMed  CAS  Google Scholar 

  • Schaerer E, Tschopp J (1993) Cytolytic T cells keep their secrets.Curr Biol 3: 167–169

    CAS  Google Scholar 

  • Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361–370

    PubMed  CAS  Google Scholar 

  • Scheurich P, Thoma B, Ucer U, Pfizenmaier K (1987) Immunoregulatory activity of recombinant human tumor necrosis factor (TNF)-α: induction of TNF receptors on human T cells and TNF-α-mediated enhancement of T cell responses. J Immunol 138: 1786–1790

    PubMed  CAS  Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9: 383–391

    PubMed  CAS  Google Scholar 

  • Schlossman SF, Boumsell L, Gilks W, Harlan JM, Kishimoto T, Morimoto C, Ritz J, Shaw S, Silverstein RL, Springer TA, Tedder TF, Todd RF(1994) CD antigen 1993. J Immunol 152: 1–2

    Google Scholar 

  • Schoerifeld HJ, Poeschi B, Frey JR, Loetscher H, Huriziker W, Lustig A, Zulauf M (1991) Efficient purification of recombinant human tumor necrosis factor ß from Escherichia coli yields biologically active protein with a trimeric structure that binds to both tumor necrosis factor receptors. J Biol Chem 266: 3863–3869

    Google Scholar 

  • Schutze S, Berkovic D, Tomsing O, Unger C, Kronke M (1991) Tumor necrosis factor induces rapid production of 1’2’diaclyglycerol by a phosphatidylcholine-specific phospholipase C. J Exp Med 174: 975–988

    PubMed  CAS  Google Scholar 

  • Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71: 765–776

    PubMed  CAS  Google Scholar 

  • Schwarz H, Tuckwell J, Lötz M (1993) A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene 134: 295–298

    PubMed  CAS  Google Scholar 

  • Sciavolino PJ, Lee TH, Vilcek J (1992) Overexpression of metallothionein confers resistance to the cytotoxic effect of TNF with cadmium in MCF-7 breast carcinoma cells. Lymphokine Cytokine Res 11: 265–270

    CAS  Google Scholar 

  • Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin invest 87: 949–954

    PubMed  CAS  Google Scholar 

  • Seow H-F, Goh CR, Krishnan L, Porter AG (1989) Bacterial expression, facile purification and properties of recombinant human lymphotoxin (TNF-β). Biotechnology 7: 363

    CAS  Google Scholar 

  • Seregina TM, Mekshenkov Ml, Turetskaya RL, Nedospasov SA (1989) An autocrine growth factor constitutively produced by a human lymphoblastoid B-cell line is serologically related to lymphotoxin (TNF-β). Mol Immunol 26: 339–342

    PubMed  CAS  Google Scholar 

  • Shalaby MR, Espevik T, Rice GC, Ammann AJ, Figari IS, Ranges GE, Palladino MA Jr (1988) The involvement of human tumor necrosis factors-aand -β in the mixed lymphocyte reaction. J Immunol 141: 499–503

    PubMed  CAS  Google Scholar 

  • Sheehan KC, Ruddle NH, Schreiber RD (1989) Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J Immunol 142: 3884–3893

    PubMed  CAS  Google Scholar 

  • Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248: 1019–1023

    PubMed  CAS  Google Scholar 

  • Smith CA, Davis T, Wignall JM, Din WS, Farrah T, Upton C, McFadden G, Goodwin RG (1991) T2 open reading frame from the Shope fibroma virus encodes a soluble form of the TNF receptor. Biochem Biophys Res Commun 176: 335–342

    PubMed  CAS  Google Scholar 

  • Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, Sutherland GR, Brannan CI, Copeland NG, Jenkins NA et al. (1993) CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73: 1349–1360

    PubMed  CAS  Google Scholar 

  • Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962

    PubMed  CAS  Google Scholar 

  • Smith RA, Baglioni C (1987) The active form of tumor necrosis factor is a trimer. J Biol Chem 262: 6951–6954

    PubMed  CAS  Google Scholar 

  • Stamenkovic I, Clark EA, Seed B (1989) A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 8: 1403–1410

    PubMed  CAS  Google Scholar 

  • Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA (1988) Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52: 925–933

    PubMed  CAS  Google Scholar 

  • Suda T, Nagata S (1994) Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med 179: 873–879

    PubMed  CAS  Google Scholar 

  • Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178

    PubMed  CAS  Google Scholar 

  • Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA Jr, Shepard HM (1985) Recombinant human tumor necrosis factor-a: effects on proliferation of normal and transformed cells in vitro. Science 230: 943–945

    PubMed  CAS  Google Scholar 

  • Takahashi T, Tanaka M, Brannan CI, Jankins NA, Copeland NG, Suda T, Nagata S (1994a) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76: 969–976

    PubMed  CAS  Google Scholar 

  • Takahashi T, Tanaka M, Inazawa J, Abe T, Suda T, Nagata S (1994) Human fas ligand: gene structure, chromosomal location and species specificity. Int Immunol 6: 1567–1574

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Goeddel DV (1992) Tumor necrosis factor receptor signaling. A dominant negative mutation suppresses the activation of the 55-kDa tumor necrosis factor receptor. J Biol Chem 267: 4304–4307

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA Jr, Goeddel DV (1991) The two different receptors for tumor necrosis factor mediate distinct cellular responses.Proc Natl Acad Sci USA 88: 9292–9296

    CAS  Google Scholar 

  • Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993a) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845–853

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Goeddel DV, Reynolds C, Figari IS, Weber RF, Fendly BM, Palladino MA Jr (1993b) Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J Immunol 151: 4637–4641

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Pannica D, Goeddel DV (1993c) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268: 18542–18548

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Rothe M, Hu YF, Goeddel DV (1993d) Tumor necrosis factor’s cytotoxic activity is signaled by the p55 TNF receptor. Cell 73: 213–216

    PubMed  CAS  Google Scholar 

  • Tavernier J, Marmenout A, Bauden R, Hauquier G, Van Ostade X, Fiers W (1990) Analysis of the structure-function relationship of tumour necrosis factor. Human/mouse chimeric TNF proteins: general properties and epitope analysis. J Mol Biol 211: 493–501

    PubMed  CAS  Google Scholar 

  • Thoma B, Grell M, Pfizenmaier K, Scheurich P (1990) Identification of a 60-kD tumor necrosis factor (TNF receptor as the major signal transducing component in TNF responses. J Exp Med 172: 1019–1023

    PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212

    PubMed  CAS  Google Scholar 

  • Upton C, De Lange A, McFadden G (1987) Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the shope fibroma virus genome. Virology 160: 20–30

    PubMed  CAS  Google Scholar 

  • Upton C, Macen J, Schreiber M, McFadden G (1991) Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology 184: 370–382

    PubMed  CAS  Google Scholar 

  • Van Kooten C, Gaillard C, Galizzi J-P, Hermann P, Fossiez F, Banchereau J, Blanchard D (1994) B cells regulate expression of CD40 ligand on activated T cells by lowering mRNA level and through the release of soluble CD40. Eur J Immunol 24: 787–792

    PubMed  Google Scholar 

  • Van Ostade X, Vandenabeele P, Everaerdt B, Loetscher H, Gentz R, Brockhaus M, Lesslauer W, Tavernier J, Brouckaert P, Fiers W (1993) Human TNF mutants with selective activity on the p55 receptor. Nature 361: 266–269

    PubMed  Google Scholar 

  • Van Ostade X, Vandenabeele P, Tavernier J, Fiers W (1994) Human tumor necrosis factor mutants with preferential binding to and activity on either the R55 or R75 receptor. Eur J Biochem 220: 771–779

    PubMed  Google Scholar 

  • Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor a in vitro and in vivo. Proc Natl Acad Sci USA 89: 4845–4849

    PubMed  Google Scholar 

  • Van Arsdale TL, Ware CF (1994) TNF receptor signal transduction: ligand-dependent stimulation of a serine protein kinase activity associated with TNFR60. J Immunol 153: 3043–3050

    Google Scholar 

  • Vandenabeele P, Declercq W, Vercammen D, Van de Craen M, Grooten J, Loetscher H, Brockhaus M, Lesslauer W, Fiers W (1992) Functional Characterization of the human tumor necrosis factor receptor p75 in a transfected rat/mouse T cell hybridoma. J Exp Med 176: 1015–1024

    CAS  Google Scholar 

  • Vanhaesebroeck B, Reed JC, De Valck D, Grooten J, Miyashita T, Tanakla S, Beyaert R, van Roy F, Fiers W (1993) Effect of bcl-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor- mediated cytotoxicity. Oncogene 8: 1075–1081

    PubMed  CAS  Google Scholar 

  • Vietor I, Schwenger P, Li W, Schlessinger J, Vilcek J (1993) Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts. J Biol Chem 268: 18994–18999

    PubMed  CAS  Google Scholar 

  • Wallach D (1984) Preparations of lymphotoxin induce resistance to their own cytotoxic effect. J Immunol 132: 2464–2469

    PubMed  CAS  Google Scholar 

  • Ware CF, Harris PC, Granger GA (1981) Mechanisms of lymphocyte-mediated cytotoxicity. II. biochemical and serologic identification of a precursor lymphotoxin form (pre-LT) produced by MLC- sensitized human T lymphocytes in vitro. J Immunol 126: 1927–1933

    PubMed  CAS  Google Scholar 

  • Ware CF, Andrews JS, Shamansky LM, Grayson MH (1990) Regulation of the CTL lytic pathway by tumor necrosis factor. In: Lotze MT, Finn OJ (eds) Cellular immunity and the immunotherapy of cancer. Wiley-Liss, New York, pp 121–128

    Google Scholar 

  • Ware CF, Crowe PD, Van Arsdale TL, Andrews JL, Grayson MH, Jerzy R, Smith CA, Goodwin RG (1991) Tumor necrosis factor (TNF) receptor expression in T lymphocytes. Differential regulation of the type I TNF receptor during activation of resting and effector T cells. J Immunol 147: 4229–4238

    PubMed  CAS  Google Scholar 

  • Ware CF, Crowe PD, Grayson MH, Androlewicz MJ, Browning JL (1992) Expression of surface lymphotoxin and tumor necrosis factor on activated T,B, and natural killer cells. J Immunol 149: 3881–3888

    PubMed  CAS  Google Scholar 

  • Watanabe-Fukunaga R, Brannari C, Copeland N, Jenkins N, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317

    PubMed  CAS  Google Scholar 

  • Wiegmann K, Schutze S, Kampen E, Himmler A, MachleidtT, Kronke M (1992) Human 55-kDa receptor for tumor necrosis factor coupled to signal transduction cascades. J Biol Chem 267: 17997–18001

    CAS  Google Scholar 

  • Williamson BD, Carswell EA, Rubin BY, Prendergast JS, Old LJ (1983) Human tumor necrosis factor produced by human B-cell lines: synergistic cytotoxic interaction with human interferon. Proc Natl Acad Sci USA 80: 5397–5401

    PubMed  CAS  Google Scholar 

  • Wingfield P, Pain RH, Craig S (1987) Tumour necrosis factor is compact trimer. FEBS Lett 211: 179–184

    PubMed  CAS  Google Scholar 

  • Wold WS, Gooding LR (1991) Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    PubMed  CAS  Google Scholar 

  • Wong GH, Goeddel DV (1994) Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J Immunol 152: 1751–1755

    PubMed  CAS  Google Scholar 

  • Wong GH, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58: 923–931

    PubMed  CAS  Google Scholar 

  • Yagita H, Nakata M, Kawasaki A, Shinkai Y, Okumura K (1992) Role of perforin in lymphocyte-mediated cytolysis. Adv Immunol 51: 215–242

    PubMed  CAS  Google Scholar 

  • Yasukawa M, Yakushijin Y, Hasegawa H, Miyake M, Hitsumoto Y, Kimura S, Takeuchi N, Fujita S (1993) Expression of perforin and membrane-bound lymphotoxin (TNF-p) in virus specific CD4 human cytotoxic T-cell clones. Blood 81: 1527–1534

    PubMed  CAS  Google Scholar 

  • Yellin MJ, Sippel K, Inghirami G, Covey LR, Lee JJ, Sinning J, Clark EA, Chess L, Lederman S (1994) CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J Immunol 152: 598–608

    PubMed  CAS  Google Scholar 

  • Zhang XM, Weber I, Chen MJ (1992) Site-directed mutational analysis of human tumor necrosis factor- a receptor binding site and structure-functional relationship. J Biol Chem 267: 24069–24075

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ware, C.F., VanArsdale, T.L., Crowe, P.D., Browning, J.L. (1995). The Ligands and Receptors of the Lymphotoxin System. In: Griffiths, G.M., Tschopp, J. (eds) Pathways for Cytolysis. Current Topics in Microbiology and Immunology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79414-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79414-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79416-2

  • Online ISBN: 978-3-642-79414-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics