Skip to main content

A New Function for an Old Enzyme: The Role of DNase I in Apoptosis

  • Chapter
Pathways for Cytolysis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 198))

Abstract

Programmed cell death or apoptosis (Greek for the falling of the leafs in autumn) is an event by which cells are deliberately eliminated (recently reviewed by Ucker 1991, Williams et al. 1992 and Cohen 1993). It occurs during embryogenesis, during the formation of digits from a limb bud, during the selection of immunocompetent B or autoreactive T cells, and in many tissues to provide a stable balance of cellular mass. The morphologic events during apoptosis differ from those of necrosis, defined as the dying of cells by plasma membrane injury. During apoptosis, the nuclear chromatin rapidly condenses to form crescent-shaped deposits along the nuclear envelope. The nucleus convolutes and fragments, while the cytoplasmic membrane forms protuberances. These are subsequently released forming so-called apoptotic bodies containing highly condensed DNA. The whole cell may disintegrate into a large number of membrane-sealed apoptotic bodies which are immediately phagocytosed by neighboring cells or macrophages. Apoptosis affects only single cells dispersed in a given tissue and there is no release of cytoplasmic contents into the extracellular space and therefore no inflammatory reaction is induced. In contrast, necrotic cell death usually affects a large number of neighboring cells. Due to the membrane injury, cytoplasmic contents leak into the extracellular space and an inflammatory reaction ensues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacher M, Rausch U, Goebel HW, Polzar B, Mannherz HG, Aumuller G (1993) Stromal and epirthelial cells from rat ventral prostate during androgen deprivation and estrogen treatment-regulation of transcription. Exp Clin Endocrinol 101: 78–86

    Article  PubMed  CAS  Google Scholar 

  • Blikstad I, Markey F, Carlsson L, Persson T, Lindberg U (1978) Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease 1, Cell 15: 935–943

    Article  PubMed  CAS  Google Scholar 

  • Booth C, Koch GL (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59: 729–737

    Article  PubMed  CAS  Google Scholar 

  • Campbell WW, Jackson DA (1980) The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem 255: 3726–3735

    Google Scholar 

  • Chitrabamrung S, Rubin RL, Tan EM (1981) Serum deoxyribonuclease I and clinical activity in systematic lupus erythematosus. Rheumatol. Int 1: 55–60

    Google Scholar 

  • Cohen JJ (1993) Apoptosis. Immunol Today 14: 126–130

    CAS  Google Scholar 

  • Cooper EJ, Trautmann ML, Laskowski M (1950) Occurrence and distribution of an inhibitor for deoxyribonuclease in animal tissues. Proc Soc Biol Med 73: 219–222

    CAS  Google Scholar 

  • Drabowska W, Cooper EJ, Laskowski M (1949) A specific inhibitor for deoxyribonuclease J Biol Chem 177: 991–992

    Google Scholar 

  • Festy B, Paoletti C (1963) Measurement of neutral deoxyribonuclease activity (by liberation of soluble oligonucleotides). Compt Rend H Acad Sei 257: 3682–3685

    CAS  Google Scholar 

  • Fukui Y, Katsumaru H (1979) Nuclear actin bundles in Amoeba Dictyostelium and human HeLa cells induced by dimethyl sulforide. Exp Cell Res 120: 451–455

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation J Cell Biol 119: 493–501

    CAS  Google Scholar 

  • Hewish DR, Burgoyne LA (1973) Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun 52: 504–510

    Google Scholar 

  • Hitchcock SE, Carlsson L, Lindberg U (1976) Depolymerization of F-actin by deoxyribonuclease I. Cell 7: 531–542

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of actin: DNase I complex. Nature 347: 37–44

    Google Scholar 

  • Kishi K, Yasuda T, Ikehara Y, Sawazaki K, Sato W, Lida R (1990) Human serum deoxyribonuclease I (DNase I) polymorphism: pattern similarities among isoenzymes from serum, urine, kidney, liver, and pancreas. Am J Hum Genet 47: 121–126

    PubMed  CAS  Google Scholar 

  • Kolber MA, Broschat KO, Landa-Gonzalez B (1990) Cytochalasin B induces cellular DNA fragmentation. FASEBJ 4: 3021–3027

    CAS  Google Scholar 

  • Kossel A (1894) Weitere Beiträge zur Kenntnis der Nucleinsauren. Arch Anat Physiol 195: 1–2

    Google Scholar 

  • Kreuder V, Dieckhoff J, Sittig M, Mannherz HG (1984) Isolation, characterization and crystallisation of deoxyribonuclease I from bovine and rat parotid gland and its interaction with rabbit skeletal muscle actin. Eur J Biochem 139: 389–400

    Article  PubMed  CAS  Google Scholar 

  • Kunitz M (1940) Crystalline ribonuclease. J Gen Physiol 24: 15

    Article  PubMed  CAS  Google Scholar 

  • Kunitz M (1948) Isolation of crystalline deoxyribonuclease from beef pancreas. Science 108: 19–20

    Article  PubMed  CAS  Google Scholar 

  • Kunitz M (1950) Crystalline deoxyribonuclease I. Isolation and general properties. J Gen Physiol 33: 349–362

    Article  PubMed  CAS  Google Scholar 

  • Lacks SA (1981) Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J Biol Chem 256: 2644–2648

    PubMed  CAS  Google Scholar 

  • Lahm A, Suck D (1991) DNase I induced DNA conformation. 2 Ä structure of a DNase l-octamer complex. J Mol Biol 222: 645–667

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E, Lindberg U (1974) Actin is the naturally occurring inhibor of deoxyribonuclease I. Proc Natl Acad Sei USA 71: 4742–4746

    Article  CAS  Google Scholar 

  • Liao TH, Salnikow J, Moore S, Stein WH (1973) Bovine pancreatic deoxyribonuclease A. Isolation of cynogen bromide peptides; complete covalent structure of the polypeptide chain, J Biol Chem 248: 1489–1495

    Google Scholar 

  • Lindberg U (1964) Purification of an inhibitor of pancreatic deoxyribonuclease from calf spleen. Biochim Biophys Acta 82: 237–248

    Article  CAS  Google Scholar 

  • Lindberg U (1967) Studies on the complex formation between deoxyribonuclease I and spleen inhibitor II. Biochemistry 6: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Lommosoff GP, Butler PJG and Klug A (1981) Sequence-dependent variation in the conformation of DNA. J Mol Biol 149: 745–760

    Article  Google Scholar 

  • Maliska Blaszkiewicz, M, Roth JS (1983) Evidence for the presence of DNase- actin complex in L1210 leukemia cells. FEBS Lett 153: 235–239

    Article  Google Scholar 

  • Maliska Blaszkiewicz M (1986) DNase l-like activity and actin content in the liver of some vertebrates. Comp Biochem Physiol 84: 207–209

    Google Scholar 

  • Maliska Blaszkiewicz M (1990) Rat liver DNase l-like activity and its interaction with actin. Z Naturforsch (C) 45: 1165–1170

    Google Scholar 

  • Mannherz HG, Barrington Leigh J, Leberman R, Pfrang H. (1975) A specific 1:1 G-actin: DNAase I complex formed by the action of DNAase I on F-actin. FEBS Lett 60: 34–38

    Google Scholar 

  • Mannherz HG, Kabsch W, Leberman R (1977) Crystals of skeletal muscle actin; pancreatic DNAase I complex. FEBS Lett 73: 141–143

    Article  PubMed  CAS  Google Scholar 

  • Mannherz HG, Goody RS, Konrad M, Nowak E (1980) The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem 104: 367–379

    Article  PubMed  CAS  Google Scholar 

  • McConkey DJ, Nicotera P, Hartzell P, Bellomo G, Wyllie AH, Orrenius S (1989) Glucocorticoids activate a suicide process in thymocytes through elevation of cytosolic Ca2+- concentration. Arch Biochem Biophys 269: 365–370

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu H, Ueda K (1983) Association of actin with nuclear matrix from bovine lymphocytes. Exp Cell Res. 143: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchino AF, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor ß 1. Proc Natl Acad Sei USA 89: 5408–5412

    Article  CAS  Google Scholar 

  • Oefner C, Suck D (1986) Crystallographic refinement and structure of DNase I at 2 Ä resolution. J Mol Biol 192: 605–632

    Article  PubMed  CAS  Google Scholar 

  • Paddenberg R, Hüttemann B, Wulf S, Mannherz HG (1994) Endonuclease activities of the human pancreatic tumor cell line PaTu 8902LM during cycloheximide induced apoptosis. Eur J Cell Biol 63 [Suppl. 40]: 30

    Google Scholar 

  • Peitsch MC, Hesterkamp T, Polzar B, Mannherz HG, Tschopp J (1992) Functional characterization of serum DNase I in MRL-lpr/lpr mice. Biochem Biophys Res Commun 186: 739–745

    Article  PubMed  CAS  Google Scholar 

  • Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald HR, Mannherz HG, Tschopp J (1993a) Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 12: 371–377

    PubMed  CAS  Google Scholar 

  • Peitsch MC, Müller C and Tschopp (1993b) DNA fragmentation during apoptosis is caused by frequent single strand cuts. Nucl Acids Res 18: 4206–4209

    Article  Google Scholar 

  • Peitsch MC, Mannherz HG, Tschopp J (1994) The apoptosis endonucleases: Cleaning up after cell death. Trends Cell Biol 4: 37–41

    Google Scholar 

  • Price PA, Stein WH, Moore S (1969) Effect of divalent cations on the reduction and re-formation of the disulfide bonds of deoxyribonuclease, J Biol Chem 244: 929–932

    PubMed  CAS  Google Scholar 

  • Price PA, Liu TY, Stein WH, Moore S (1969) Properties of chromatographically purified bovine pancreative deoxyribonuclease, J Biol Chem 244: 917–923

    PubMed  CAS  Google Scholar 

  • Polzar B, Mannherz HG (1990) Nucleotide sequence of a full length cDNA clone encoding the deoxyribonuclease I from the rat parotid gland. Nucleic Acids Res 18: 7151

    Article  PubMed  CAS  Google Scholar 

  • Polzar B, Peitsch MC, Loos R, Tschopp J, Mannherz HG (1993) Overexpression of deoxyribonuclease I ( DNase I) transfected into COS-cells; its distribution during apoptotic death. Eur J Cell Biol 62: 397–405

    Google Scholar 

  • Polzar B, Zanotti S, Stephan H, Rauch F, Peitsch MC, Irmler M, Tschopp J, Mannherz HG (1994) Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol 64: 200–210

    PubMed  CAS  Google Scholar 

  • Rohr G, Mannherz HG (1978) Isolation and characterization of secretory actin: DNase I complex from rat pancreatic juice. Eur J Biochem 89: 151–157

    Google Scholar 

  • Suck D (1982) Crystallisation and preliminary crystallographic data of bovine pancreatic deoxyribonuclease I. J Mol Biol 162: 511–513

    Article  PubMed  CAS  Google Scholar 

  • Suck D, Oefner C, Kabsch W (1984) Three-dimensional structure of bovine pancreatic DNase I at 2.5 Å resolution, EMBO J 3: 2423–2430

    PubMed  CAS  Google Scholar 

  • Suck D, Oefner C (1986) Structure of DNase I at 2.0 Ä resolution suggests a mechanism for binding to and cutting DNA. Nature 321: 620–625

    Article  PubMed  CAS  Google Scholar 

  • Suck D, Lahm A, Oefner C (1988) Structure refined to 2 Ä of a nicked DNA octanucleotide complex with DNase I. Nature 332: 464–468

    Article  PubMed  CAS  Google Scholar 

  • Ucker DS (1991) Death by suicide: One way to go in mammalian cellular development? New Biol 3: 103–109

    PubMed  CAS  Google Scholar 

  • Ucker DS, Obermiller PS, Eckhart W, Apgar JR, Berger NA, Meyers J (1992) Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol Cell Biol 12: 3060–3069

    PubMed  CAS  Google Scholar 

  • Valkov NI, Ivanova MI, Uscheva AA, Krachmarov CP (1989) Association of actin with DNA and nuclear matrix from Guerin ascites tumor cells. Mol Cell Biochem 87: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Williams GT, Smith CA, McCarthy NJ, Grimes EA (1992) Apoptosis: Final control point in cell biology. Trends Cell Biol 2: 263–267

    Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556

    Article  PubMed  CAS  Google Scholar 

  • Zanotti S, Polzar B, Doll K, Stephan H, Niessing J, Mannherz HG (1995) Localization of deoxyribonuclease I gene transcripts in rat tissues and its correlation to apoptotic cell elimination. Histochem (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mannherz, H.G., Peitsch, M.C., Zanotti, S., Paddenberg, R., Polzar, B. (1995). A New Function for an Old Enzyme: The Role of DNase I in Apoptosis. In: Griffiths, G.M., Tschopp, J. (eds) Pathways for Cytolysis. Current Topics in Microbiology and Immunology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79414-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79414-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79416-2

  • Online ISBN: 978-3-642-79414-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics