Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 65))

Abstract

The skeleton is formed during childhood through the constant influence of daily mechanical loading. Later, the skeleton is remodelled in order to renew bone tissue and reorganise bone structure. Bone remodelling is a dynamic process, with several types of cells working close together in time and space. It occurs in anatomically discrete sites, which are active for a few months and then rest for several years. During each remodelling process, some bone mass is lost, causing the normal age-related bone loss. The bone remodelling process mediates at any time the effect of both hormonal and mechanical agents that act on the skeleton. Different naturally-occurring events or therapeutic regimens can influence the activation frequency, the balance, and all phases of the remodelling process. This dynamic remodelling process can be simulated during normal aging, the menopause, and also during different therapeutic regimens. A simulation model thereby provides “non-invasive” information concerning the influence of the remodelling process on bone mass, architecture, and thereby bone strength — and it also provides a tool for evaluating existing and new regimens for the treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson P.J.: Variation in trabecular structure of vertebrae with age. Calcif. Tissue Res. 1: 24–32, 1967.

    Article  Google Scholar 

  2. Baron R., Vignery A., Lang R.: Reversal phase and osteopenia: Defective coupling of resorption to formation in the pathogenesis of osteoporosis. In: Osteoporosis, Recent Advances in Pathogenesis and Treatment. (H.F. DeLuca, H.M. Frost, W.S.S. Jee, C.C. Johnston Jr. and A.M. Parfitt eds.), Baltimore University Press, pp. 311–320, 1981.

    Google Scholar 

  3. Baron R.: Molecular mechanisms of bone resorption by the osteoclast. The Anatomical Record 224: 317–324, 1989.

    Article  ADS  Google Scholar 

  4. Bell G.H., Dunbar O., Beck J.S., Gibb A.: Variations in strength of vertebrae with age and their relation to osteoporosis. Calc. Tiss. Res. 1: 75–86, 1967.

    Article  Google Scholar 

  5. Bergot C., Prêteux F., Laval-Jeantet A.-M.: Quantitative image analysis of thin sagittal and transversal slices from autopsy specimens from L3 vertebrae. In: Osteoporosis 1987. (C. Christiansen et al. eds.), Osteo Press, Copenhagen, pp. 338–340, 1987.

    Google Scholar 

  6. Boyde A. and Jones S.J.: Early scanning electron microscopic studies of hard tissue resorption: Their relation to current concepts reviewed. Scan. Microsc. Vol. 1,1: 369–381, 1987.

    Google Scholar 

  7. Brockstedt H., Kassem M., Eriksen E.F., Mosekilde Le., Melsen F.: Age- and sex- related changes in the iliac cortical bone mass and remodelling. Bone 14: 681–691, 1993.

    Article  Google Scholar 

  8. Chambers T.J.: The pathobiology of the osteoclast. J. Clin. Pathol. 38: 241–252, 1985.

    Article  Google Scholar 

  9. Chambers T. J., Darby J.A., Fuller K.: Mammalian collagenase predisposes bone surfaces to osteoclastic resorption. Cell. Tissue Res. 241: 671–675, 1985.

    Article  Google Scholar 

  10. Chambers T.J. and Fuller K.: Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact. J. Cell Sci. 76: 155–165, 1985.

    Google Scholar 

  11. Eastell R., Mosekilde Li., Hodgson S.F., Riggs B.L.: Proportion of human vertebral body bone that is cancellous. J. Bone Min. Res. 5,12: 1237–1241, 1990.

    Google Scholar 

  12. Elmardi A.S., Katchburian M.V., Katchburian E.: Electron microscopy of developing calvaria reveals images that suggest that osteoclasts engulf and destroy osteocytes during bone resorption. Calcif. Tiss. Int. 46: 239–245, 1990.

    Article  Google Scholar 

  13. Eriksen E.F., Melsen F., Mosekilde Le.: Reconstruction of the resorptive site in iliac trabecular bone. A kinetic model for bone resorption in 20 normal individuals. Metab. Bone Dis. Relat. Res. 5: 235–242, 1984.

    Google Scholar 

  14. Eriksen E.F., Mosekilde Le., Melsen F.: Trabecular bone resorption depth decreases with age: Differences between normal males and females. Bone 6: 141–146, 1985.

    Article  Google Scholar 

  15. Eriksen E.F.: Normal and pathological remodelling of human trabecular bone: Three dimensional reconstruction of the remodelling sequence in normals and in metabolic bone disease. Endocrine Rev. 7,4: 379–408, 1986.

    Article  Google Scholar 

  16. Feldkamp L.E., Goldstein S.A., Parfitt A.M. et al.: The direct examination of three- dimensional bone architecture in vitro by computed tomography. J. Bone Min. Res. 4: 3–11, 1989.

    Article  Google Scholar 

  17. Frost H.M.: Bone remodelling dynamics (C.R. Lam ed.), C.C. Thomas, Springfield, IL, pp. 65–75, 1963.

    Google Scholar 

  18. Frost H.M.: Dynamics of bone remodelling. In: Bone Biodynamics (H.M. Frost ed.) Little Brown & Co., Boston, USA, pp 315–331, 1964.

    Google Scholar 

  19. Frost H.M.: Editorial: Tetracycline based histological analysis of bone remodelling. Calcif. Tissue Res. 3: 211–237, 1969

    Article  Google Scholar 

  20. Frost H.M.: The spinal osteoporoses. Mechanisms of pathogenesis and pathophysiology. Clin. Endocrin. Metab. 2,2: 257–275, 1973.

    Article  Google Scholar 

  21. Frost H.M.: A determinant of bone architecture. The minimum effective strain. Clin. Orthop. Rel. Res. 175: 286–292, 1983A.

    Google Scholar 

  22. Frost H.M.: The skeletal intermediary organization. Metab. Bone Dis. Relat. Res. 4: 281–290, 1983B.

    Article  Google Scholar 

  23. Frost H.M.: Editorial: The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 2: 73–85, 1987.

    Google Scholar 

  24. Frost H.M.: Editorial: Vital biomechanics: Proposed general concepts for skeletal adaptions to mechanical usage. Calcif. Tissue Int. 42: 145–156, 1988.

    Article  Google Scholar 

  25. Garrahan N. J., Croucher P.I., Wright C., Compston J.E.: A computerised technique for the quantitative assessment of resorption cavities in trabecular bone. Bone 11: 241–245, 1990.

    Article  Google Scholar 

  26. Gilsanz V., Gibbens D.T., Carlson M., Boechat M.I., Cann C.E., Schulz E.E.: Peak trabecular vertebral density: A comparison of adolescent and adult females. Calcif. Tissue Int. 43: 260–262, 1988.

    Article  Google Scholar 

  27. Hodgskinson R. and Currey J.D.: Effects of structural variation on Young’s modulus of non-human cancellous bone. Proc. Instn. Mech. Engrs. 204: 43–52, 1990.

    Google Scholar 

  28. Jensen K.S., Mosekilde Li., Mosekilde Le.: A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11: 417–423, 1990.

    Article  Google Scholar 

  29. Karazian L. and Graves G.A.: Compressive strength characteristics of the human vertebral centrum. Spine 21: 1–14, 1977.

    Google Scholar 

  30. Kleerekoper M., Villanueva A.R., Stanciu J., Rao D.S., Parfitt A.M.: The role of three dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 37: 594–597, 1985.

    Article  Google Scholar 

  31. Kragstrup J. and Melsen F.: Three-dimensional morphology of trabecular bone osteons reconstructed from serial sections. Metab. Bone Dis. Relat. Res. 5: 127–130, 1983.

    Article  Google Scholar 

  32. Lacy M.E., Bevan J.A., Boyce R.W., Geddes A.D.: Antiresorptive druge and trabecular bone turnover: validation and testing of a computer model. Calcif. Tissue Int. 54: 179–185, 1994.

    Article  Google Scholar 

  33. Marcus R., Kosek J., Pfefferbaum A., Horning S.: Age-related loss of trabecular bone in premenopausal women: A biopsy study. Calcif. Tissue Int. 35: 406–409, 1983.

    Article  Google Scholar 

  34. Melsen F., Melsen B., Mosekilde Le., Bergmann S.: Histomorphometric analysis of normal bone from the iliac crest. Acta Path. Microbiol. Scand. Sect. A, 86: 70–81, 1978.

    Google Scholar 

  35. Mosekilde Li.: Age related changes in vertebral trabecular bone architecture — Assessed by a new method. Bone 9: 247–250, 1988.

    Article  Google Scholar 

  36. Mosekilde Li.: Sex differences in age-related loss of vertebral trabecular bone mass and structure — biomechanical consequences. Bone 10: 425–432, 1989.

    Article  Google Scholar 

  37. Mosekilde Li.: Consequences of the remodelling process for vertebral trabecular bone structure — A scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10: 13–35, 1990.

    Article  Google Scholar 

  38. Mosekilde Li. and Mosekilde Le.: Iliac crest trabecular bone volume as a predictor for vertebral compressive strength, ash density and trabecular bone volume in normal individuals. Bone 9: 195–199, 1988.

    Article  Google Scholar 

  39. Mosekilde Li., Mosekilde Le., Danielsen C.C.: Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8: 79–85, 1987.

    Article  Google Scholar 

  40. Odgaard A., Andersen K., Melsen F., Gundersen H.J.G.: A direct method for fast three-dimensional serial reconstruction. J. Microsc. 159: 335–342, 1990.

    Article  Google Scholar 

  41. Parfitt A.M.: The cellular basis of bone remodelling: The quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif. Tissue Int. 36: S37–45, 1984A.

    Article  Google Scholar 

  42. Parfitt A.M.: Age-related structural changes in trabecular and cortical bone: Cellular mechanisms and biomechanical consequences. Calcif. Tissue Int. 36: 37–45, 1984B.

    Article  Google Scholar 

  43. Parfitt A.M.: Trabecular bone architecture in the pathogenesis and prevention of fracture. Am. J. Med. 82, 1B: 68–72, 1987.

    Article  Google Scholar 

  44. Parfitt A.M.: Bone remodelling: Relationship to the amount and structure of bone, and the pathogenesis and prevention of fractures. In: Osteoporosis: Etiology, diagnosis and management. (B.L. Riggs and L.J. Melton III eds.), Raven Press, New York, pp. 45–93, 1988.

    Google Scholar 

  45. Parfitt A.M., Mathews H.E., Villanueva A.R., Kleerekoper M., Frame B., Rao D.S.: Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J. Clin. Inv. 72, 4: 1396–1409, 1983.

    Article  Google Scholar 

  46. Pesch H.-J., Scharf H.-P., Lauer G., Seibold H.: Der altersabhängige Verbundbau der Lendenwirbelkörper. Virchows Arch. A. (Pathol. Anat.) 386: 21–41, 1980.

    Article  Google Scholar 

  47. Radin E.L.: Mechanical aspects of fractures and their treatment. In: Osteoporosis, Recent Advances in Pathogenesis and Treatment (H.F. DeLuca, H.M. Frost, W.S.S. Jee, C.C. Johnston Jr. and A.M. Parfitt eds.), University Park Press, Baltimore, pp. 191–199, 1983.

    Google Scholar 

  48. Reeve J.: A stochastic analysis of iliac trabecular bone dynamics. Clin. Orthop. Rel. Res. 213: 264–278, 1986.

    Google Scholar 

  49. Riggs B.L., Wahner H.W., Melton L.J.III, Richelson L.S., Judd H.L., Offord K.P.: Rates of bone loss in the appendicular and axial skeletons of women: Evidence of substantial vertebral bone loss before menopause. J. Clin. Invest.77: 1487–1491, 1986.

    Article  Google Scholar 

  50. Thomsen J.S., Mosekilde Li., Boyce R.W., Mosekilde E.: Stochastic simulation of vertebral trabecular bone remodell-ing. Bone, in press.

    Google Scholar 

  51. Townsend P.R., Rose R.M., Radin E.L.: Buckling studies of single human trabecule. J. Biomech. 8: 199–201, 1975A.

    Article  Google Scholar 

  52. Townsend P.R., Raux P., Rose R.M., Miegel R.E., Radin E.L.: The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J. Biomech. 8: 363–367, 1975B.

    Article  Google Scholar 

  53. Vesterby A., Gundersen H.J.G., Melsen F.: Star volume of marrow space and trabeculae of the first lumbar vertebra: Sampling efficiency and biological variation. Bone 10: 7–13, 1989.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mosekilde, L., Thomsen, J.S., Mosekilde, E. (1995). Dynamics of Bone Remodelling. In: Mosekilde, E., Mouritsen, O.G. (eds) Modelling the Dynamics of Biological Systems. Springer Series in Synergetics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79290-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79290-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79292-2

  • Online ISBN: 978-3-642-79290-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics