Skip to main content

Tomographische Messung von Hirndurchblutung und Hirnstoffwechsel

  • Chapter
Neuromonitoring in Anästhesie und Intensivmedizin

Part of the book series: Klinische Anästhesiologie und Intensivtherapie ((KAI,volume 46))

  • 32 Accesses

Zusammenfassung

Das vielseitigste und genaueste Verfahren zur tomographischen Messung von Hirndurchblutung und Hirnstoffwechsel ist derzeit die Positronenemissionstomographie. Es handelt sich dabei um ein nuklearmedizinisches Verfahren, bei dem Schnittbilder der zerebralen Verteilung von spezifischen, radioaktiv markierten Tracern erstellt werden. Zur Markierung werden extrem kurzlebige, in der Regel mit Hilfe eines Zyklotrons erzeugte Positronenemitter, wie 11C, 13N, 15O und 18F, verwendet (Tabelle 1). Dieses personell und apparativ enorm aufwendige Verfahren hat den wesentlichen Vorteil, daß die zur Markierung verwendeten Atome aufgrund ihrer kleinen Größe und des häufigen Vorkommens der entsprechenden stabilen Isotope in biologisch aktiven Substanzen die biochemischen Eigenschaften der Tracer kaum verändern und deswegen hochspezifische Messungen erlauben. Außerdem kommen die eingesetzten Detektorsysteme — im Gegensatz zu herkömmlichen nuklearmedizinischen Verfahren — ohne Bleikollimatoren aus, was die Quantifizierung der Traceraktivität in physikalischen Einheiten (z. B. nCi/ml Gewebe) ermöglicht. Genaue Kenntnis des biochemischen Verhaltens der Tracer und die Quantifizierung in absoluten Einheiten ermöglichen die Entwicklung quantitativer physiologischer Modelle und damit die Bestimmung von Stoffwechselraten in physiologischen Einheiten (z.B. Glukoseumsatz in μmol Glukose/100 g Gewebe/min). Eine eingehende Darstellung der technischen Aspekte des Verfahrens findet sich z. B. bei Wienhard et al. [78].

Ausgewählte Isotope und Verbindungen (Tracer) für PET. (Mod. nach [78])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alavi A, Fazakas F, Alves W et al. (1987) Positron emission tomography in the evaluation of head injury. J Cereb Blood Flow Metab 7(Suppl): 646

    Google Scholar 

  2. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia — The ischemic penumbra. Stroke 12: 723–725

    Article  PubMed  CAS  Google Scholar 

  3. Baron JC, Bousser MG, Comar D, Duquesnoy N, v Sastre J, Castaigne P (1980) Crossed cerebellar diaschisis in human supratentorial brain infarction. Transactions of the American Neurological Association 105: 459–461

    Google Scholar 

  4. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P (1981) Reversal of focal misery perfusion syndrome by extra-intracranial arterial bypass in hemodynamic cerebral ischemia — A case study with 15-0-PET. Stroke 12: 454–459

    Article  PubMed  CAS  Google Scholar 

  5. Baron JC, Delattre JY, Bories J et al. (1983) Comparison study of CT and PET data in recent cerebral infarction. AJNR 4: 536–540

    PubMed  CAS  Google Scholar 

  6. Baxter LR, Schwartz JM, Phelps ME et al. (1988) Localization of neurochemical effects of cocaine and other stimulants in the human brain. J Clin Psychiatr 49(Suppl): 23–26

    CAS  Google Scholar 

  7. Beaney RP (1989) Cerebral perfusion and oxygen-uptake studies in patients with intracranial tumors. Seminars in Neurology 9: 377–387

    Article  PubMed  CAS  Google Scholar 

  8. Beckmann N, Turkalj I, Seelig J, Keller U (1991) C-13 NMR for the assessment of human brain glucose metabolism invivo. Biochemistry 30: 6362–6366

    Article  PubMed  CAS  Google Scholar 

  9. Beil C, Rudolf J, Neveling M, Pawlik G, Haupt WF, Szelies B, Hojer C, Heiss W-D (1989) Correlation of PET measurements and electrodiagnostic findings in vegetative states. J Cereb Blood Flow Metab 9(Supp 1):S728

    Google Scholar 

  10. Brooks DJ, Ibanez V, Sawle GV et al. (1992) Striatal d2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with C-11-raclopride and positron emission tomography. Ann Neurol 31: 184–192

    Article  PubMed  CAS  Google Scholar 

  11. Brücke T, Podreka I, Angelberger P et al. (1991) Dopamine-d2 receptor imaging with SPECT. Studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab 11: 220–228

    Article  PubMed  Google Scholar 

  12. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Cerebral metabolism in man after acute stroke — New observations using localized proton NMR-spectroscopy. Magnetic Resonance in Medicine 9: 126–131

    Article  PubMed  CAS  Google Scholar 

  13. Chiron C, Raynaud C, Maziere B et al. (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33: 696–703

    PubMed  CAS  Google Scholar 

  14. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22: 487–497

    Article  PubMed  CAS  Google Scholar 

  15. Decety J, Sjoholm H, Ryding E, Stenberg G, Ingvar DH (1990) The cerebellum participates in mental activity — tomographic measurements of regional cerebral blood flow. Brain Res 535: 313–317

    Article  PubMed  CAS  Google Scholar 

  16. Di Chiro G (1987) Positron emission tomopgraphy using [F-18]-fluorodeoxyglucose in brain tumors — A powerful diagnostic and prognostic tool. Invest Radiol 22: 360–371

    Article  PubMed  Google Scholar 

  17. Engel J, Henry RT, Risinger MW, Mazziotta JC, Sutherling WW, Levesque MF, Phelps ME (1990) Presurgical evaluation for partial epilepsy — relative contributions of chronic depth-electrode recordings versus FDG PET and scalp-sphenoidal ictal EEG. Neurology 40: 1670–1677

    PubMed  Google Scholar 

  18. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and PET: theory, procedure and normal values. J Comput Assist Tomogr 4: 727–736

    Article  PubMed  CAS  Google Scholar 

  19. Frahm J, Bruhn H, Hanicke W, Merboldt KD, Mursch K, Markakis E (1991) Localized proton NMR-spectroscopy of brain tumors using short-echo time steam sequences. J Comput Assist Tomogr 15: 915–922

    Article  PubMed  CAS  Google Scholar 

  20. Friedland RP, Budinger TF, Ganz E et al. (1983) Regional cerebral metabolic alterations in dementia of the Alzheimner type: PET with 18-F-fluorodeoxyglucose. J Comput Assit Tomogr 7: 590–598

    Article  CAS  Google Scholar 

  21. Frith CD, Friston KJ, Liddle PF, Frackowiak RSJ (1991) A PET study of word finding. Neuropsychologia 29: 1137–1148

    Article  PubMed  CAS  Google Scholar 

  22. Gur D; Yonas H, Good W (1989) Local cerebral blood flow by xenon-enhanced CT: current status, potential improvements, and future directions. Cerebrovasc and Brain Metab Rev 1: 68–86

    CAS  Google Scholar 

  23. Hartman A, Dettmers C, Schuier FJ, Wassmann HD, Schumacher HW (1991) Effect of stable xenon on regional cerebral blood flow and the electroencephalogram in normal volunteers. Stroke 22: 182–189

    Article  Google Scholar 

  24. Heiss W-D (1979) Effect of drugs on cerebral blood flow in man. Adv Neurol 25: 95–114

    PubMed  CAS  Google Scholar 

  25. Heiss W-D, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14: 294–301

    Article  PubMed  CAS  Google Scholar 

  26. Heiss W-D, Herholz K, Pawlik G, Szelies B (1988) Beitrag der Positronen-Emissions-Tomographie zur Diagnose der Demenz. DMW 113: 1362–1367

    Article  CAS  Google Scholar 

  27. Heiss W-D, Hebold I, Klinkhammer P, Ziffling P, Szelies B, Pawlik G, Herholz K (1988) Effect of piracetam on cerebral glucose metabolism in Alzheimer’s disease as measured by positron emission tomography. J Cereb Blood Flow Metab 8: 613–617

    Article  PubMed  CAS  Google Scholar 

  28. Heiss W-D, Pawlik G, Hebold I, Beil C, Herholz K, Szelies B, Wienhard K (1989) Can positron emission tomography be used to gauge the brain’s capacity for functional recovery following ischemic stroke? (A European perspective). In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases. Raven, New York pp 345–352

    Google Scholar 

  29. Heiss W-D, Heindel W, Herholz K, Rudolf R, Bunke J, Jeske J, Friedmann G (1990) Positron emission tomography of fluor-18-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors. J Nucl Med 31: 302–310

    PubMed  CAS  Google Scholar 

  30. Heiss W-D, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, Wienhard K (1992): Progressive derangement of periinfarct viable tissues in ischemic stroke. J Cereb Blood Flow Metab 12: 193–203

    Article  PubMed  CAS  Google Scholar 

  31. Herholz K, Adams R, Kessler J, Szelies B, Grond M, Heiss W-D (1990) Criteria for the diagnosis of Alzheimer’s disease with positron emission tomography. Dementia 1: 156–164

    Google Scholar 

  32. Herholz K, Heindel W, Luyten PR et al. (1992) In-vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 31: 319–327

    Article  PubMed  CAS  Google Scholar 

  33. Ingvar DH, Risberg J (1967) Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Exper Brain Res 3: 195–211

    CAS  Google Scholar 

  34. Kahn DA, Prohovnik I, Lucas LR, Sackeim HA (1989) Dissociated effects of amphetamine on arousal and cortical blood flow in humans. Biol Psychiatr 25: 755–767

    Article  CAS  Google Scholar 

  35. Karbe H, Herholz K, Szelies B, Pawlik G, Wienhard K, Heiss W-D (1989) Regional metabolic correlates of token-test in cortical and subcortical left hemispheric infarction. Neurology 39: 1083–1088

    PubMed  CAS  Google Scholar 

  36. Kushner MJ, Schwartz R, Alavi A, Dann R, Rosen M, Silver F, Reivich M (1987) Cerebral glucose consumption following verbal audiotory stimulation Brain Res 409: 79–87

    Article  PubMed  CAS  Google Scholar 

  37. Lang W, Podreka I, Suess E, Muller C, Zeitlhofer J, Deecke L (1988) Single photon-emission computerized tomography during and between seizures. J Neurol 235: 277–284

    Article  PubMed  CAS  Google Scholar 

  38. Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 1: 1113–1115

    Article  Google Scholar 

  39. Lassen NA, Ingvar DH, Raichle ME, Friberg L (eds) (1991) Brain work and mental activity. Proceedings of the Alfred Benzon Symposium 31. Munksgaard, Copenhagen

    Google Scholar 

  40. Leenders KL, Palmer AJ, Quinn N et al. (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg and Psychiatr 49: 853–860

    Article  CAS  Google Scholar 

  41. Leenders KL, Perani D, Lammertsma AA et al. (1990) Cerebral blood flow, blood volume and oxygen utilization — normal values and effect of age. Brain 113: 27–47

    Article  PubMed  Google Scholar 

  42. Leiderman DB, Balish M, Bromfield EB, Theodore WH (1991) Effect of valproate on human cerebral glucose metabolism. Epilepsia 32: 417–422

    Article  PubMed  CAS  Google Scholar 

  43. Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 2: 321–335

    Article  PubMed  CAS  Google Scholar 

  44. Lilja A, Bergström K, Hartvig P, Spännare B, Halldin C, Lundqvist H, Langström B (1985) Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography. AJNR 6: 505–514

    PubMed  CAS  Google Scholar 

  45. London ED, Broussolle EPM, Links JM et al. (1990) Morphine-induced metabolic changes in human brain studies with positron emission tomography and [fluorine-18] fluorodeoxyglucose. Arch Gen Psychiatr 47: 73–81

    Article  PubMed  CAS  Google Scholar 

  46. Mazziotta JC (1989) Huntington’s disease — Studies with structural imaging techniques and positron emission tomography. Seminars in Neurology 9: 360–369

    Article  PubMed  CAS  Google Scholar 

  47. Mies G, Heiss W-D, Auer LM, Traupe H, Ebhardt G (1983) Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14: 22–27

    Article  PubMed  CAS  Google Scholar 

  48. Mintun MA, Raichle ME, Martin WRW, Herscovitch P (1984) Brain oxygen utilization with O-15 radio-tracers and positron emission tomography. J Nucl Med 25: 177–187

    PubMed  CAS  Google Scholar 

  49. Moonen CTW, Zijl PCM van, Frank JA, LeBihan D, Becker ED (1990) Functional magnetic-resonance-imaging in medicine and physiology. Science 250: 53–61

    Article  PubMed  CAS  Google Scholar 

  50. Parks RW, Loewenstein DA, Dodrill KL et al. (1988) Cerebral metabolic effects of a verbal fluency test: a PET scan-study. J Clin and Exp Neuropsychol 10: 565–575

    Article  CAS  Google Scholar 

  51. Pawlik G, Heiss W-D (1989) Positron emission tomography and neuropsychological function. In: Bigler ED, Yeo RA, Turkheimer E (eds) Neuropsychological function and brain imaging. Plenum Publ Corp, New York, pp 65–138

    Google Scholar 

  52. Pawlik G, Heiss W-D, Beil C, Grünewald G, Herholz K, Wienhard K, Wagner R (1987) Three-dimensional patterns of speech-induced cerebral and cerebellar activation in healthy volunteers and in aphasic stroke patients studied by PET of 2 (18F)-fluorodeoxyglucose. In: Meyer JS, Lechner H, Reivich M, Ott EO (eds) Cerebral vascular disease. Excerpta Medica, Amsterdam, pp 207–210

    Google Scholar 

  53. Pawlik G, Fink GR, Treig T, Stefan H, Linke DB, Heiss W-D (1992) Hemispheric dominance for language: a comparative study of activation PET and intracarotid amobarbital (Wada) test results. Neurology 42(Suppl 3): 451

    Google Scholar 

  54. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331: 585–589

    Article  PubMed  CAS  Google Scholar 

  55. Petersen SE, Fox PT, Snyder AZ, Raichle ME (1990) Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science 249: 1041–1044

    Article  PubMed  CAS  Google Scholar 

  56. Pietrzyk U, Herholz K, Heiss W-D (1990) Threedimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 14: 51–59

    Article  PubMed  CAS  Google Scholar 

  57. Powers WJ, Press GA; Grubb RL Jr, Gado M, Raichle ME (1987) The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 106: 27–35

    PubMed  CAS  Google Scholar 

  58. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2 150. II. Implementation and validation. J Nucl Med 24: 790–798

    PubMed  CAS  Google Scholar 

  59. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hofman E, Alavi A, Som P, Sokoloff L (1979) The (18)F-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137

    PubMed  CAS  Google Scholar 

  60. Rogg J, Rutigliano M, Yonas H, Johnson DW, Pentheny S, Latchaw RE (1989) The acetazolamide challenge — imaging techniques designed to evaluate cerebral blood flow reserve. AJNR 10: 803–810

    Google Scholar 

  61. Rothman DL, Hanstock CC, Petroff OAC, Novotny EJ, Prichard JW, Shulman RG (1992) Localized H-1-NMR spectra of glutamate in the human brain. Magnetic Resonance in Medicine 25: 94–106

    Article  PubMed  CAS  Google Scholar 

  62. Rottenberg DA, Ginos JZ, Kearfott KJ, Junck L, Dhawan V, Jarden JO (1985) In vivo measurement of brain tumor pH using (11C) DM0 and positron emission tomography. Ann Neurol 17: 70–79

    Article  PubMed  CAS  Google Scholar 

  63. Russell D, Dybevold S, Kjartansson O, Nyberghansen R, Rootwelt K, Wiberg J (1990) Cerebral vasoreactivity and blood flow before and 3 months after carotid endarterectomy. Stroke 21: 1029–1032

    Article  PubMed  CAS  Google Scholar 

  64. Samson Y, Baron JC, Feline A, Bories J, Cronzel C (1986) Local cerebral glucose utilisation in chronic alcoholics: a positron emission tomographic study. J Neurol, Neurosurg and Psychiatr 49: 1165–1170

    Article  CAS  Google Scholar 

  65. Senda M, Alpert NM, Mackay BC et al. (1989) Evaluation of the (CO2)-C-11 positron emission tomographic method for measuring brain pH. 2. Quantitative pH mapping in patients with ischemic cerebrovascular diseases. J Cereb Blood Flow and Metab 9: 859–873

    Article  CAS  Google Scholar 

  66. Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14-C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anaesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  67. Sokoloff L (1981) The relationship between function and energy metabolism: its use in the localization of functional activity in the nervous system. Neurosc Res 19: 159–210

    CAS  Google Scholar 

  68. Symon L (1985) Flow thresholds in brain ischemia and the effects of drugs. Br J Anaest 57: 34–43

    Article  CAS  Google Scholar 

  69. Szelies B, Herholz K, Pawlik G, Beil C, Wienhard K, Heiss W-D (1986) Zerebraler Glukosestoffwechsel bei präseniler Demenz vom Alzheimer-Typ — Verlaufskontrolle unter Therapie mit muskarinergem Cholinagonisten. Fortschr Neurol und Psychiatr 11: 364–373

    Article  Google Scholar 

  70. Theodore WH, Di Chiro G, Margolin R, Fishbein D, Porter RJ, Brooks RA (1986) Barbiturates reduce human cerebral glucose metabolism. Neurology 36: 60–64

    PubMed  CAS  Google Scholar 

  71. Theodore WH, Bairamian D, Newmark ME, Di Chiro G, Porter RJ, Larson S, Fishbein D (1986) Effect of phenytoin on human cerebral glucose metabolism. J Cereb Blood Flow Metab 6: 315–320

    Article  PubMed  CAS  Google Scholar 

  72. Theodore WH, Bromfield E, Onorati L (1989) The effect of carbamazepine on cerebral glucose metabolism. Ann Neurol 25: 516–520

    Article  PubMed  CAS  Google Scholar 

  73. Tovi M, Lilja A, Bergström M, Ericsson A, Bergström K, Hartman M (1990) Delineation of gliomas with magnetic resonance imaging using gd-dtpa in comparison with computed tomography and positron emission tomography Acta Radiologica 31: 417–429

    PubMed  CAS  Google Scholar 

  74. Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Ivanovic M, Hollister L (1991) Cerebellar metabolic activation by δ-9-tetrahydro-cannabinol in human brain — a study with positron emission tomography and F-18-2-fluoro-2-deoxyglucose. Psych Res Neuroimaging 40: 69–78

    Article  CAS  Google Scholar 

  75. Volkow ND, Fowler JS, Wolf AP et al. (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatr 148: 621–626

    PubMed  CAS  Google Scholar 

  76. Vorstrup S (1988) Tomographic cerebral blood flow measurements in patients with ischemic cerebrovascular disease and evaluation of the vasodilatory capacity by the acetazolamide test — Preface. Acta Neurol Scand 77(S114A): 3–48

    Google Scholar 

  77. Warburg O (1953) On the origin of cancer cells. Science 123: 309–314

    Article  Google Scholar 

  78. Wienhard K, Wagner R, Heiss W-D (eds) (1989) Positron emission tomography. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  79. Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stöcklin G, Heiss W-D (1991) Increased amino acid transport into brain tumors measured by positron emission tomography of L-(2-18F) fluorotyrosine. J Nucl Med 32: 1338–1346

    PubMed  CAS  Google Scholar 

  80. Wise RJS, Rhodes CG, Gibbs JM, Hatazwa J, Palmer T, Frackowiak RSJ, Jones T (1983a) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14: 627–637

    Article  PubMed  CAS  Google Scholar 

  81. Wise RJS, Bernardi S, Frackowiak RSJ, Legg NJ, Jones T (1983b) Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain 106: 197–222

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

E. Rügheimer M. Dinkel

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herholz, K., Heiss, WD. (1994). Tomographische Messung von Hirndurchblutung und Hirnstoffwechsel. In: Rügheimer, E., Dinkel, M. (eds) Neuromonitoring in Anästhesie und Intensivmedizin. Klinische Anästhesiologie und Intensivtherapie, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78752-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78752-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57611-2

  • Online ISBN: 978-3-642-78752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics