Skip to main content

The Biochemistry of Oxygen Transport in Red-Blooded Antarctic Fish

  • Conference paper
Biology of Antarctic Fish

Abstract

The temperature of the coastal antarctic waters, in which fish from temperate waters would be unable to survive, is close to the constant value of −1.87 °C, the equilibrium temperature of the ice-seawater mixture. During the increasing geographic and climatic isolation south of the Antarctic Convergence, initiated approximately 65 Ma, the physiology of antarctic fish became gradually adjusted to tolerate the progressive cooling of the environment. Because of the development of cold adaptation, the Antarctic Ocean is now the ideal habitat for the fish fauna, by virtue of the evolutionary response at different levels of life organization (organ, cell, molecule) to the many constraints of this habitat. The Convergence became a natural barrier to migration in both directions, thus representing a key factor for fish isolation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen NC (1984) Genera and subfamilies of the family Nototheniidae (Pisces, Perciformes) from the Antarctic and Subantarctic. Steenstrupia 10:1–34

    Google Scholar 

  • Andriashev AP (1987) A general review of the antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Proc V Congr Europ Ichthyol, Stockholm 1985. Swed Mus Nat Hist, pp 357–372

    Google Scholar 

  • Anthony EH (1961) Survival of goldfish in the presence of carbon monoxide. J Exp Biol 38:109–129

    CAS  Google Scholar 

  • Arnone A (1972) X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature (Lond) 237:146–149

    Article  CAS  Google Scholar 

  • Barra D, Bossa F, Brunori M (1981) Structure of binding sites for heterotropic effectors in fish hemoglobins. Nature (Lond) 293:587–588

    Article  CAS  Google Scholar 

  • Binotti I, Giovenco S, Giardina B, Antonini E, Brunori M, Wyman J (1971) Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch Biochem Biophys 142:274–280

    Article  PubMed  CAS  Google Scholar 

  • Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–481

    CAS  Google Scholar 

  • Carey F, Teal J (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci US 56:1464–1469

    Article  CAS  Google Scholar 

  • D’Avino R, di Prisco G (1988) Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties. 1. Molecular structure. Comp Biochem Physiol 90B:579–584

    Google Scholar 

  • D’Avino R, di Prisco G (1989) Hemoglobin from the antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterization. Eur J Biochem 179:699–705

    Article  PubMed  Google Scholar 

  • D’Avino R, Caruso C, Romano M, Camardella L, Rutigliano B, di Prisco G (1989a) Hemoglobin from the antarctic fish Notothenia coriiceps neglecta. 2. Amino acid sequence of the α chain of Hb 1. Eur J Biochem 179:707–713

    Article  PubMed  Google Scholar 

  • D’Avino R, Caruso C, Schininà ME, Rutigliano B, Romano M, Camardella L, Bossa F, Barra D, di Prisco G (1989b) The amino acid sequence of the α- and β-chains of the two hemoglobins of the antarctic fish Notothenia coriiceps neglecta. FEBS Lett 250:53–56

    Article  PubMed  Google Scholar 

  • D’Avino R, Caruso C, Schininà ME, Rutigliano B, Romano M, Camardella L, Bossa F, Barra D, di Prisco G (1990) Hemoglobin from the antarctic fish Notothenia coriiceps neglecta. Amino acid sequence of the beta chain. Comp Biochem Physiol 96B:367–373

    Google Scholar 

  • DeVries AL (1980) Biological antifreezes and survival in freezing environments. In: Gilles R (ed) Animals and environmental fitness. Pergamon Press, Oxford, pp 583–607

    Google Scholar 

  • Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution and pathology. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • di Prisco G (1986a) Antarctic fishes and cold adaptation. Proc 1st Symp on Mar Biochem, Ital Biochem Soc, Grasso, Bologna, pp 51–68

    Google Scholar 

  • di Prisco G (1986b) Functional properties of hemoglobin from antarctic fishes. Antarct J US 21(5):215–216

    Google Scholar 

  • di Prisco G (1988) A study of hemoglobin in antarctic fishes: Purification and characterisation of hemoglobins from four species. Comp Biochem Physiol 90B:631–637

    Google Scholar 

  • di Prisco G, D’Avino R (1989) Molecular adaptation of the blood of antarctic teleosts to environmental conditions. Antarct Sci 1:119–124

    Article  Google Scholar 

  • di Prisco G, D’Avino R, Condò S, Giardina B, Brunori M (1986) Regulatory effects on oxygen binding in antarctic fish hemoglobin. Proc 1st Symp on Mar Biochem, Ital Biochem Soc, Grasso, Bologna, pp 113–115

    Google Scholar 

  • di Prisco G, Giardina B, D’Avino R, Condò SG, Bellelli A, Brunori M (1988) Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties — II. Oxygen binding properties. Comp Biochem Physiol 90B:585–591

    Google Scholar 

  • di Prisco G, D’Avino R, Camardella L, Caruso C, Romano M, Rutigliano B (1990) Structure and function of hemoglobin in antarctic fishes and evolutionary implications. Polar Biol 10:269–274

    Article  Google Scholar 

  • Eastman JT (1988) Ocular morphology in antarctic notothenioid fishes. J Morphol 196:283–306

    Article  Google Scholar 

  • Everson I, Ralph R (1968) Blood analyses of some antarctic fish. Bull Br Antarct Surv 15:59–62

    Google Scholar 

  • Giardina B, Amiconi G (1981) Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures. Methods Enzymol 76:417–427

    Article  PubMed  CAS  Google Scholar 

  • Gillen RG, Riggs A (1972) Structure and function of the hemoglobins from the carp, Cyprinus carpio. J Biol Chem 247:6039–6046

    PubMed  CAS  Google Scholar 

  • Grigg GC (1967) Some respiratory properties of the blood of four species of antarctic fishes. Comp Biochem Physiol 23:139–148

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen EA, Douglas EL (1970) Respiratory characteristics of the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol 33:733–744

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen EA, Douglas EL (1977) Respiratory and circulatory adaptations to the absence of hemoglobin in Chaenichthyid fishes. In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, pp 479–487

    Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a hemoglobinless antarctic fish (Chaenocephalus aceratus Lönnberg) compared with three red-blooded antarctic fish. Comp Biochem Physiol 34:457–471

    Article  PubMed  CAS  Google Scholar 

  • Hureau J-C, Petit D, Fine JM, Marneux M (1977) New cytological, biochemical and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within antarctic ecosystems. Smithsonian Inst, Washington, DC, pp 459–477

    Google Scholar 

  • Kennett JP (1968) Paleo-oceanographic aspects of the foraminiferal zonation in the Upper Miocene-Lower Pliocene of New Zealand. G Geol Ser 2, 35:143–156

    Google Scholar 

  • Macdonald JA, Montgomery JC, Wells RMG (1987) Comparative physiology of antarctic fishes. Adv Mar Biol 24:321–388

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transition: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1969) The haemoglobin molecule. Proc R Soc London, Ser B 173:113–140

    Article  CAS  Google Scholar 

  • Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian hemoglobins. Nature (Lond) 299:421–426

    Article  CAS  Google Scholar 

  • Qvist J, Weber RE, DeVries AL, Zapol WM (1977) pH and hemoglobin oxygen affinity in blood from the antarctic cod Dissostichus mawsoni. J Exp Biol 67:77–88

    PubMed  CAS  Google Scholar 

  • Raymond JA, DeVries AL (1976) Some respiratory characteristic of the blood of four antarctic fishes. J Exp Zool 196:393–396

    Article  PubMed  CAS  Google Scholar 

  • Riggs A (1970) Properties of fish hemoglobins. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. Academic Press, New York, pp 209–252

    Google Scholar 

  • Root RW (1931) The respiratory function of blood in marine organisms. Biol Bull Mar Biol Lab, Woods Hole 61:427–456

    Article  CAS  Google Scholar 

  • Rossi-Fanelli A, Antonini E (1960) Oxygen equilibrium of haemoglobin from Thunnus thynnus. Nature (Lond) 186:895–896

    Article  CAS  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (Lond) 173:848–850

    Article  CAS  Google Scholar 

  • Tan AL, De Young A, Noble RW (1972) The pH dependence of the affinity, kinetics, and cooperativity of ligand binding to carp hemoglobin, Cyprinus carpio. J Biol Chem 247:2493–2498

    PubMed  CAS  Google Scholar 

  • Tetens V, Wells RMG, DeVries AL (1984) Antarctic fish blood: respiratory properties and the effects of thermal acclimation. J Exp Biol 109:265–279

    CAS  Google Scholar 

  • Wells RMG (1986) Cutaneous oxygen uptake in the antarctic icequab, Rigophila dearborni (Pisces; Zoarcidae). Polar Biol 5:175–179

    Article  Google Scholar 

  • Wells RMG, Jokumsen A (1982) Oxygen binding properties of hemoglobins from antarctic fishes. Comp Biochem Physiol 71B:469–473

    CAS  Google Scholar 

  • Wells RMG, Ashby MD, Duncan SJ, Macdonald JA (1980) Comparative studies of the erythrocytes and haemoglobins in nototheniid fishes from Antarctica. J Fish Biol 17:517–527

    Article  Google Scholar 

  • Wells RMG, Macdonald JA, di Prisco G (1990) Thin-blooded antarctic fishes: a rheological comparison of the haemoglobin-free icefishes, Chionodraco kathleenae and Cryodraco antarcticus, with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg DK (1974) The choroid rete mirabile. I. Oxygen secretion and structure: comparison with the swim bladder rete mirabile. Biol Bull 145:116–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

di Prisco, G. et al. (1991). The Biochemistry of Oxygen Transport in Red-Blooded Antarctic Fish. In: di Prisco, G., Maresca, B., Tota, B. (eds) Biology of Antarctic Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76217-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76217-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76219-2

  • Online ISBN: 978-3-642-76217-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics