Skip to main content

Biogeochemical Transformations in Sediments: Kinetic Models of Early Diagenesis

  • Conference paper
Interactions of C, N, P and S Biogeochemical Cycles and Global Change

Part of the book series: NATO ASI Series ((ASII,volume 4))

Abstract

Sediments are major reservoirs of carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). In fact, with the exception of N, marine sediments form the largest reservoirs of these elements at the Earth’s surface (Mackenzie et al., 1992). On geological time scales, sedimentary burial in the oceans is one of the critical sink mechanisms controlling the global distribution and cycling of C, N, P and S (e.g., Holland, 1984; Berner, 1989; Berner et al., 1992; Kump, 1992). Thus, there is a need to understand and quantify the processes that affect burial of these elements in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller R. C. (1980a) Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim. Cosmochim. Acta 44, 1955–1965.

    Google Scholar 

  • Aller R. C. (1980b) Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P). Adv. Geophys. 22, 237–350.

    Google Scholar 

  • Aller R. C. (1980c) Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn. Adv. Geophys. 22, 351–415.

    Google Scholar 

  • Aller R. C. (1983) The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. Mar. Res. 41, 299–322.

    Google Scholar 

  • Aller R. C. (1984) The importance of relict burrow structures and burrow irrigation in controlling sedimentary solute distributions. Geochim. Cosmochim. Acta 48, 1929–1934.

    Google Scholar 

  • Aller R. C. and Mackin J. E. (1989) Open-incubation, diffusion methods for measuring solute reaction rates in sediments. J. Mar. Res. 47, 411–440.

    Google Scholar 

  • Aller R. C. and Yingst J. Y. (1978) Biogeochemistry of tube-dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy). J. Mar. Res. 36, 201–254.

    Google Scholar 

  • Aller R. C. and Yingst J. Y. (1985) Effects of the marine deposit feeders Heteromastus filiformis (polychaeta), Macoma baltica (bivalvia), and Tellina texana (bivalvia) on averaged sedimentary solute transport, reaction rates, and microbial distributions. J. Mar. Res. 46, 615–645.

    Google Scholar 

  • Archer D., Emerson S., and Reimers C. (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim. Cosmochim. Acta 53, 2831–2845.

    Google Scholar 

  • Arnold R. G., DiChristina T. J. and Hoffmann M. R. (1988) Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol. Bioeng. 32, 1081–1096.

    Google Scholar 

  • Arnold R. G., Hoffmann M. R., DiChristina T. J., and Picardal F. W. (1990) Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl. Env. Microbiol. 56, 2811–2817.

    Google Scholar 

  • Baden S. P., Loo L.-O, Pihl L. and Rosenberg R. (1990) Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio 19, 113–122.

    Google Scholar 

  • Bender M. L. and Heggie D. T. (1984) Fate of organic carbon reaching the sea floor: A status report. Geochim. Cosmochim. Acta 48, 977–986.

    Google Scholar 

  • Bender M. L., Martin W., Hess J., Sayles F., Ball L. and Lambert C. (1987) A whole-core squeezer for interstitial pore-water sampling. Limnol. Oceanogr. 32, 1214–1225.

    Google Scholar 

  • Bender M. L., Jahnke R., Weiss R., Martin W., Heggie D. T., Orchardo J., Sowers T. (1989) Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta 53, 685–697.

    Google Scholar 

  • Berner R. A. (1964) An idealized model of dissolved sulfate distribution in recent sediments. Geochim. Cosmochim. Acta 28, 1497–1503.

    Google Scholar 

  • Berner R. A. (1974) Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments. In: The Sea (ed. E. D. Goldberg). Wiley, N.Y., Vol. 5, pp. 427–450.

    Google Scholar 

  • Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, N.J., 241 p.

    Google Scholar 

  • Berner R. A. (1984) Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 48, 605–615.

    Google Scholar 

  • Berner R. A. (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Paleogeogr. Paleoclimatol. Paleoecol. 75, 97–122.

    Google Scholar 

  • Berner R. A., Ruttenberg K. C., Ingall E. D., and Rao J.-L. (1992) The nature of phosphorus burial in modern marine sediments. In: Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou ). NATO ASI Series, Springer-Verlage, Berlin. (this volume)

    Google Scholar 

  • Billen G. (1978) A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuarine Coastal Mar. Sci. 7, 127–146.

    Google Scholar 

  • Billen G., Dessery S., Lancelot C., and Meybeck M. (1989) Seasonal and inter-annual variations of nitrogen diagenesis in the sediments of a recently impounded basin. Biogeochem. 8, 73–100.

    Google Scholar 

  • Blackburn T. H. (1980) Seasonal variation in the rate of organic N mineralization in anoxic sediments. Colloques Internationaux C. N.R.S. no. 293, 173–183.

    Google Scholar 

  • Boudreau B. P. (1984) On the equivalence of non-local and radial-diffusion models for porewater irrigation. J. Mar. Res. 42, 731–735.

    Google Scholar 

  • Boudreau B. P. (1986a) Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing. Amer. J. Sci. 286, 161–198.

    Google Scholar 

  • Boudreau B. P. (1986b) Mathematics of tracer mixing in sediments: II. Nonlocal mixing and biological conveyor-belt phenomena. Amer. J. Sci. 286, 199–238.

    Google Scholar 

  • Boudreau B. P. (1987) A steady-state diagenetic model for dissolved carbonate species and pH in the pore waters of oxic and suboxic sediments. Geochim. Cosmochim. Acta 51, 1985–1996.

    Google Scholar 

  • Boudreau B. P. (1989) The diffusion and telegraph equations in diagenetic modelling. Geochim. Cosmochim. Acta 53, 1857–1866.

    Google Scholar 

  • Boudreau B. P. (1991) Modelling the sulfide-oxygen reaction and associated pH gradients in porewaters. Geochim. Cosmochim. Acta 55, 145–159.

    Google Scholar 

  • Boudreau B. P. and Westrich J. T. (1984) The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim. Cosmochim. Acta 48, 2503–2516.

    Google Scholar 

  • Boudreau B. P. and Imboden D. M. (1987) Mathematics of tracer mixing in sediments: III. The theory of nonlocal mixing within sediments. Amer. J. Sci. 287, 693–719.

    Google Scholar 

  • Boudreau B. P. and Canfield D. E. (1988) A provisional model for pH in anoxic porewaters: Application to the FOAM site. J. Mar. Res. 46, 429–455.

    Google Scholar 

  • Boudreau B. P. and Taylor R. J. (1989) A theoretical study of diagenetic concentration fields near manganese nodules at the sediment-water interface. J. Geophys. Res. 94, 2124–2136.

    Google Scholar 

  • Boudreau B. P. and Ruddick B. R. (1991) On a reactive continuum representation of organic matter diagenesis. Amer. J. Sci. 291, 507–538.

    Google Scholar 

  • Brock T. D. and Madigan M. T. (1988) Biology of Microorganisms. Prentice Hall, Englewood Cliffs, N. J., 835 p.

    Google Scholar 

  • Burdige D. J. and Martens C. S. (1988) Biogeochemical cycling in an organic-rich coastal marine basin: 10. The role of amino acids in sedimentary carbon and nitrogen cycling. Geochim. Cosmochim. Acta 52, 1571–1584.

    Google Scholar 

  • Burdige D. J. and Martens C. S. (1990) Biogeochemical cycling in an organic-rich coastal marine basin: 11. The sedimentary cycling of dissolved, free amino acids. Geochim. Cosmochim. Acta 54, 3033–3052.

    Google Scholar 

  • Burton E. A. and Walter L. M. (1990) The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater. Geochim. Cosmochim. Acta 54, 797–808.

    Google Scholar 

  • Callender E. (1982) Benthic phosphorus regeneration in the Potomac River estuary. Hydrobiologia 92, 431–446.

    Google Scholar 

  • Canfield D. E. (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. 36, 121–138.

    Google Scholar 

  • Canfield D. E. (1992) Organic matter oxidation in marine sediments. In: Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou ). NATO ASI Series, Springer-Verlag, Berlin. (this volume)

    Google Scholar 

  • Christensen J. P., Devol A. H. and Smethie W. M. (1984) Biological enhancement of solute exchange between sediments and bottom water on the Washington continental shelf. Continental Shelf Res. 3, 9–23.

    Google Scholar 

  • Demaison G. J. and Moore G. T. (1980) Anoxic environments and oil source bed genesis. Bull. Amer. Assoc. Petrol. Geol. 64, 1179–1209.

    Google Scholar 

  • Devol A. H., Anderson J. J., Kuivila K. and Murray J. W. (1984) A model of coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 48, 993–1004.

    Google Scholar 

  • Emerson S. and Bender M. (1981) Carbon fluxes at the sediment-water interface of the deep-sea: Calcium carbonate preservation. J. Mar. Res. 39, 139–162.

    Google Scholar 

  • Emerson S., Jahnke R. and Heggie D. (1984) Sediment-water exchange in shallow water estuarine sediments. J. Mar. Res. 42, 709–730.

    Google Scholar 

  • Emerson S., Fisher K., Reimers C. and Heggie D. (1985) Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res. 32, 1–21.

    Google Scholar 

  • Emerson S., Stump C., Grootes P. M., Stuiver M., Farwell G. W. and Schmidt F. H. (1987) estimates of degradable organic carbon in deep-sea surface sediments from 14C concentrations. Nature 329, 51–53.

    Google Scholar 

  • Esteves J. L., Mille G., Blanc F. and Bertrand J. C. (1986) Nitrate reduction activity in a continuous flow-through system in marine sediments. Microb. Ecol. 12, 283–290.

    Google Scholar 

  • Fleming B. A. (1986) Kinetics of reaction between silicic acid and amorphous silica surfaces in NaCl solutions. J. Colloid Inters. Sci. 110, 40–64.

    Google Scholar 

  • Foree E. G. and McCarty P. L. (1970) Anaerobic decomposition of algae. Environ. Sci. and Technol. 4, 842–849.

    Google Scholar 

  • Froelich P. N., Bender M. L., Luedtke N. A., Heath G. R. and DeVries T. (1982) The marine phophorus cycle. Amer. J. Sci. 282, 474–511.

    Google Scholar 

  • Gächter R. and Meyer J. S. (1992) The role of microorganisms in sediment phosphorus dynamics in relation to mobilization and fixation of phosphorus. Hydrobiologia (in press).

    Google Scholar 

  • Gächter R, Meyer J. S., and Mares, A. (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33, 1542–1558.

    Google Scholar 

  • Gaillard J.-F. (1982) Comportement Géochimique du Fer et du Phosphore lors de leur Diagénèse. Doctoral Thesis, University Pierre et Marie Curie, France, 130 p.

    Google Scholar 

  • Gaillard J.-F., Sarazin G., Pauwels H., Philippe L., Lavergne D. and Blake G. (1987) Interstitial water and sediment chemistries of Lake Aiguebelette (Savoy, France). Chem. Geol. 63, 73–84.

    Google Scholar 

  • Gaillard J.-F., Pauwels H. and Michard G. (1989) Chemical diagenesis in coastal marine sediments. Oceanol. Acta 12, 175–187.

    Google Scholar 

  • Goldhaber M. B, Aller R. C., Cochran J. K., Rosenfeld J. K., Martens C. S. and Berner R. A. (1977) Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group. Amer. J. Sci. 277, 193–237.

    Google Scholar 

  • Goloway F. and Bender M. L. (1982) Diagenetic models of interstitial nitrate profiles in deep-sea suboxic sediments. Limnol. Oceanogr. 27, 624–638.

    Google Scholar 

  • Grundmanis V. and Murray J. W. (1982) Aerobic respiration in pelagic marine sediments. Geochim. Cosmochim. Acta 46, 1101–1120.

    Google Scholar 

  • Gujer W. and Zehnder A. J. B. (1983) Conversion processes in anaerobic digestion. Wat. Sci. Tech. 15, 127–167.

    Google Scholar 

  • Harisson W. D, Musgrave D. and Reeburgh W. S. (1983) A wave-induced transport process in marine sediments. J. Geophys. Res. 88, 7617–7622.

    Google Scholar 

  • Henrichs S. M. and Farrington J. W. (1987) Early diagenesis of amino acids and organic matter in two coastal sediments. Geochim. Cosmochim. Acta 51, 1–15.

    Google Scholar 

  • Henrichs S. M. and Reeburgh W. S. (1987) Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrob. J. 5, 191–237.

    Google Scholar 

  • Hering J. G. and Stumm W. (1990) Oxidative and reductive dissolution of minerals. In: Mineral-Water Interface Geochemistry (eds. M. F. Hochella and A. F. White). Mineral. Soc. Am., Reviews in Mineralogy 23, pp. 427–465.

    Google Scholar 

  • Holland H. D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton Univ. Press, Princeton, N. J., 582 p.

    Google Scholar 

  • Humphrey A. E. (1972) The kinetics of biosystems: A review. In: Chemical Reactor Engineering (ed. R. F. Gould). ACS Adv. Çhem. Series 109, pp. 630–650.

    Google Scholar 

  • Imboden D. M. (1981) Tracers and Mixing in the Aquatic Environment. Habilitation Thesis. Swiss Federal Institute of Technology (ETH), Zürich, 137 p.

    Google Scholar 

  • Imboden D. M. and Lerman A. (1978) Chemical models of lakes. In: Lakes: Chemistry, Geology, Physics (ed. A. Lerman ). Springer-Verlag, N.Y., pp. 341–356.

    Google Scholar 

  • Ingall E. D. and Van Cappellen P. (1990) Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373–386.

    Google Scholar 

  • Ingall E. D., Bustin R. M. and Van Cappellen P. (1992) Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta (in press)

    Google Scholar 

  • Ingvorsen K., Zehnder A. J. B. and Jorgensen B. B. (1984) Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl. Env. Microbiol. 47, 403–408.

    Google Scholar 

  • Jahnke R. A., Emerson S. R. and Murray J. W. (1982) A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. Limnol. Oceanogr. 27, 610–623.

    Google Scholar 

  • Jahnke R. A., Emerson S. R., Roe K. K. and Burnett W. C. (1983) The present day formation of apatite in Mexican continental margin sediments. Geochim. Cosmochim. Acta 47, 259–266.

    Google Scholar 

  • Jahnke R. A., Emerson S. R., Cochran J. K. and Hirschberg D. J. (1986) Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific. Earth Planet. Sci. Lett. 77, 59–69.

    Google Scholar 

  • Jahnke R. A., Emerson S. R., Reimers C. E., Schuffert J., Ruttenberg K. and Archer D. (1989) Benthic recycling of biogenic debris in the eastern tropical Atlantic Ocean. Geochim. Cosmochim. Acta 53, 2947–2960.

    Google Scholar 

  • Jones B. F. and Bowser C. J. (1978) The mineralogy and related chemistry of lake sediments. In: Lakes: Chemistry, Geology, Physics (ed. A. Lerman ). Springer-Verlag, N.Y., pp. 179–235.

    Google Scholar 

  • Jonsson P., Carman R., and Wulff F. (1990) Laminated sediments in the Baltic - A tool for evaluating nutrient mass balances. Ambio 19, 152–158.

    Google Scholar 

  • Jorgensen B. B. (1983) Processes at the sediment-water interface. In: The Major Biogeochemical Cycles and Their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, John Wiley & Sons, N. Y., pp. 477–515.

    Google Scholar 

  • Kamp-Nielsen L. (1989) Sediment-water exchange models. In: Mathematical Submodels in Water Quality Systems (eds. S. E. Jorgensen and M. J. Gromiec). Elsevier, pp. 371–398.

    Google Scholar 

  • Kirwan A. D. and Kump L. R. (1987) Models of geochemical systems from mixture theory: Diffusion. Geochim. Cosmochim. Acta 51, 1219–1226.

    Google Scholar 

  • Klump V. J. and Martens C. S. (1989) The seasonality of nutrient regeneration in an organic-rich coastal sediment: Kinetic modeling of changing pore-water nutrient and sulfate distributions. Limnol. Oceanogr. 34, 559–577.

    Google Scholar 

  • Krom M. D. and Berner R. A. (1981) The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45, 207–216.

    Google Scholar 

  • Kuivila K. M., Murray J. W., Devol A. H., Kirdstrom M. E. and Reimers C. E. (1988) Methane cycling in the sediments of Lake Washington. Limnol. Oceanogr. 33, 571–581.

    Google Scholar 

  • Kump L. R. (1992) The coupling of the carbon and sulfur biogeochemical cycles over Phanerozoic time. In: Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou ). NATO ASI Series, Springer-Verlag, Berlin. (this volume)

    Google Scholar 

  • Lasaga A. C. (1979) The treatment of multicomponent diffusion and ion pairs in diagenetic fluxes. Am. J. Sci. 279, 324–346.

    Google Scholar 

  • Lasaga A. C. (1981a) Influences of diffusion coupling in diagenetic concentration profiles. Am. J. Sci. 281, 553–575.

    Google Scholar 

  • Lasaga A. C. (1981b) Rate laws of chemical reactions. In: Kinetics of Geochemical Processes (eds. A. C. Lasaga and R. J. Kirkpatrick). Miner. Soc. Am., Reviews in Mineralogy 8, pp. 1–68.

    Google Scholar 

  • Lasaga A. C. (1990) Atomic treatment of mineral-water surface reactions. In: Mineral-Water Interface Geochemistry (eds. M. F. Hochella and A. F. White). Miner. Soc. Am., Reviews in Mineralogy 23, pp. 17–85.

    Google Scholar 

  • Lasaga A. C. and Holland H. D. (1976) Mathematical aspects of non-steady-state diagenesis. Geochim. Cosmochim. Acta 40, 257–266.

    Google Scholar 

  • Lerman A. (1979) Geochemical Processes: Water and Sediment Environments. J. Wiley & Sons, N.Y., 481 p.

    Google Scholar 

  • Lovley D. R. (1987) Organic matter mineralization with the reduction of ferric iron: A review. Geomicrob. J. 5, 375–399.

    Google Scholar 

  • Lovley D. R. and Klug M. J. (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Env. Microbiol. 45, 187–192.

    Google Scholar 

  • Lovley D. R. and Klug M. J. (1986) Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta 50, 11–18.

    Google Scholar 

  • Lovley D. R. and Phillips E. J. P. (1987) Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53, 2636–2641.

    Google Scholar 

  • Lovley D. R. and Phillips E. J. P. (1988) Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480.

    Google Scholar 

  • Mackenzie F. T., Ver L. M., Sabine C., Lane M. and Lerman A. (1992) C, N, P, S global biogeochemical cycles and modeling of global change. In: Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou ). NATO ASI Series, Springer-Verlag, Berlin. (this volume)

    Google Scholar 

  • Mackin J. E. and Swider K. T. (1989) Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. Mar. Res. 47, 681–716.

    Google Scholar 

  • Martin W. R. and Bender M. L. (1988) The variability of benthic fluxes and sedimentary remineralization rates in response to seasonally variable organic carbon rain rates in the deep sea: A modeling study. Amer. J. Sci. 288, 561–574.

    Google Scholar 

  • Matisoff G., Berton Fisher J. and McCall P. L. (1981) Kinetics of nutrient release from decomposing lake sediments. Geochim. Cosmochim. Acta 45, 2333–2347.

    Google Scholar 

  • McNichol A. P., Lee C. and Druffel E. R. M. (1988) Carbon cycling in coastal sediments: 1. A quantitative estimate of the remineralization of organic carbon in the sediments of Buzzards Bay, MA. Geochim. Cosmochim. Acta 52, 1531–1543.

    Google Scholar 

  • Metcalf and Eddy Inc. (1979) Wastewater Engineering: Treatment, Disposal, Reuse. McGraw-Hill, N.Y., 920 p.

    Google Scholar 

  • Michard G. (1971) Theoretical model for manganese distribution in calcareous sediment cores. J. Geophys. Res. 76, 2179–2186.

    Google Scholar 

  • Michelson A. R., Jacobson M. E., Scranton M. I. and Mackin J. E. (1989) Modeling the distribution of acetate in anoxic estuarine sediments. Limnol. Oceonogr. 34, 747–757.

    Google Scholar 

  • Middelburg J. J. (1989) A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581.

    Google Scholar 

  • Morse J. W. (1983) The kinetics of calcium carbonate dissolution and precipitation. In Carbonates: Mineralogy and Chemistry (ed. R. J. Reeder). Min. Soc. Am., Review in Mineralogy 11, pp. 227–264

    Google Scholar 

  • Morse J. W. and Casey W. H. (1988) Ostwald processes and mineral paragenesis in sediments. Amer. J. Sci. 288, 537–560.

    Google Scholar 

  • Mucci A. (1986) Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: Quantitative influence of orthophosphate ions. Geochim. Cosmochim. Acta 50, 2255–2265.

    Google Scholar 

  • Müller P. J. and Mangini A. (1980) Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230Th and 231Pa. Earth Planet. Sci. Lett. 51, 94–114.

    Google Scholar 

  • Murray J. W. and Kuivila K. M. (1990) Organic matter diagenesis in the northeast Pacific: Transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res. 37, 59–80.

    Google Scholar 

  • Murray R. E., Parson L. L. and Smith M. S. (1989) Kinetics of nitrate utilization by mixed populations of denitrifying bacteria. Appl. Environ. Microbiol. 55, 717–721.

    Google Scholar 

  • Nielsen A. E. (1984) Electrolyte crystal growth mechanisms. J. Crystal Growth 67, 289–310.

    Google Scholar 

  • Nielsen A. E. (1986) Mechanisms and rate laws in electrolyte crystal growth from aqueous solution. In: Geochemical Processes at Mineral Surfaces (eds. J. A. Davis and K. F. Hayes). Amer. Chem. Soc. Symp. Series 323, pp. 600–614.

    Google Scholar 

  • Nielsen L. P., Christensen P. B., Revsbech N. P. and Sorensen J. (1990) Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microb. Ecol. 19, 63–72.

    Google Scholar 

  • Novelli P. C., Michelson A. R., Scranton M. I., Banta G. T., Hobbie J. E. and Howarth R. W. (1988) Hydrogen and acetate cycling in two sulfate-reducing sediments: Buzzards Bay and Town Cove, Mass. Geochim. Cosmochim. Acta 52, 2477–2486.

    Google Scholar 

  • Rabouille C. and Gaillard J.-F. (1990) The validity of steady-state flux calculations in early diagenesis: A computer simulation of deep-sea silica diagenesis. Deep-Sea Res. 37, 625–646.

    Google Scholar 

  • Rabouille C. and Gaillard J.-F. (1991a) A coupled model representing the deep-sea organic carbon mineralization and oxygen consumption in surficial sediments. J. Geophys. Res. 96, 2761–2776.

    Google Scholar 

  • Rabouille C. and Gaillard J.-F. (1991b) Towards the EDGE: Early Diagenetic Global Explanation. A model depicting the early diagenesis of organic matter, O2, NO3, Mn, and PO4. Geochim. Cosmochim. Acta 55, 2511–2525.

    Google Scholar 

  • Raiswell R. (1987) Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones. In: Diagenesis of Sedimentary Sequences (ed. J. D. Marshall). Geol. Soc. Spec. Publ. 36, pp. 41–54.

    Google Scholar 

  • Reddy K. R., Jessup R. E. and Rao P. S. C. (1988) Nitrogen dynamics in a eutrophic lake sediment. Hydrobiologia 159, 177–188.

    Google Scholar 

  • Reeburgh W. S. (1983) Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci. 11, 269–298.

    Google Scholar 

  • Reimers C. E. and Suess E. (1983) The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean. Mar. Chem. 13, 141–168.

    Google Scholar 

  • Rhoads D. C. and Morse I. W. (1971) Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4, 413–428.

    Google Scholar 

  • Ruttenberg K. C. (1990) Diagenesis and Burial of Phosphorus in Marine Sediments. Ph. D. Thesis, Yale University, 375 p.

    Google Scholar 

  • Santschi P., Höhener P., Benoit G. and Buchholtz-ten Brink M. (1990) Chemical processes at the sediment-water interface. Mar. Chem. 30, 269–315.

    Google Scholar 

  • Schink D. R. and Guinasso N. L. (1977) Modelling the influence of bioturbation and other processes on calcium carbonate dissolution at the sea floor. In: The Fate of Fossil Fuel CO 2 in the Ocean (eds. N. R. Andersen and A. Malahoff ). Plenum Press, New York, pp. 375–400.

    Google Scholar 

  • Schink D. R., Guinasso N. L., and Fanning K. A. (1975) Processes affecting the concentration of silica at the sediment-water interface of the Atlantic Ocean. J. Geophys. Res. 80, 3013–3031.

    Google Scholar 

  • Schneider J., Röhrs J. and Jäger P. (1990) Sedimentation and eutrophication history of Austrian Alpine lakes. In: Large Lakes: Ecological Structure and Function (eds. M. M. Tilzer and C. Serruya ). Springer-Verlag, Berlin, pp. 316–335.

    Google Scholar 

  • Scudlark J. R. and Church T. M. (1989) The sedimentary flux of nutrients at a Delaware salt marsh site: A geochemical perspective. Biogeochemistry 7, 55–75.

    Google Scholar 

  • Shapiro J. (1967) Induced rapid release and uptake of phosphate by microorganisms. Science 155, 1269–1271.

    Google Scholar 

  • Simonin J.-P., Gaillard J.-F., Turq P. and Soualhia E. (1988) Diffusion coupling in electrolyte solutions. I. Transient effects on a tracer ion: Sulfate. J. Phys. Chem. 92, 1696–1700.

    Google Scholar 

  • Simonin J.-P., Turq, P., Soualhia, E., Gaillard J.-F. (1989) Transport coupling of ions: Influence of ion pairing and pH gradient–Application to the study of diagenetic fluxes. Chem. Geol. 78, 343–356.

    Google Scholar 

  • Smith K. L. and Baldwin R. J. (1984) Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature 307, 624–626.

    Google Scholar 

  • Smith K. L., Carlucci A. F., Jahnke R. A. and Craven D. B. (1987) Organic carbon mineralization in the Santa Catalina Basin: benthic boundary layer metabolism. Deep-Sea Res. 34, 185–211.

    Google Scholar 

  • Stanier R. Y., Adelberg E. A., and Ingraham J. L. (1980) General Microbiology ( 4th ed. ). The Macmillan Press, London, 871 p.

    Google Scholar 

  • Steefel C. I. and Van Cappellen P. (1990) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677.

    Google Scholar 

  • Stumm W. and Baccini P. (1978) Man-made chemical perturbation of lakes. In: Lakes: Chemistry, Geology, Physics (ed. A. Lerman ). Springer-Verlag, N.Y., pp. 91–126.

    Google Scholar 

  • Stumm W. and Morgan J. J. (1981) Aquatic Chemistry. J. Wiley & Sons, N.Y., 780 p.

    Google Scholar 

  • Stumm W. and Wieland E. (1990) Dissolution of oxide and silicate minerals: Rates depend on surface speciation. In: Aquatic Chemical Kinetics (ed. W. Stumm ). Wiley, New York, pp. 367–400.

    Google Scholar 

  • Stumm W. and Wollast R. (1990) Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals. Rev. of Geophys. 28, 53–69.

    Google Scholar 

  • Stull R. B. (1984) Transient turbulence theory. Part I. The concept of eddy mixing across finite distances. J. Atmos. Sci. 44, 3351–3367.

    Google Scholar 

  • Suess E. and Müller P. J. (1980) Productivity, sedimentation rate and sedimentary organic matter in the oceans-II. Elemental fractionation. Colloques Internationaux C. N.R.S. no. 293, 17–26.

    Google Scholar 

  • Tezuka Y. (1990) Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microb. Ecol. 19, 227–238.

    Google Scholar 

  • Thiede J. and van Andel T. H. (1977) The paleoenvironment of anaerobic sediments in the late Mesozoic South Atlantic Ocean. Earth Planet. Sci. Lett. 33, 301–309.

    Google Scholar 

  • Toerien D. F., Gerber A., Utter L. H. and Cloete T. E. (1990) Enhanced biological phosphorus removal in activated sludge systems. In: Advances in Microbial Ecology (ed. K. C. Marshall). Plenum Press, V. 11, Chap. 5, pp. 173–230.

    Google Scholar 

  • Toth D. J. and Lerman A. (1977) Organic matter reactivity and sedimentation rates in the oceans. Amer. J. Sci. 277, 465–485.

    Google Scholar 

  • Tromp T. K., Van Cappellen P. and Key R. M. (1992) Early diagenesis of organic carbon and organic phosphorus: A model study. Geochim. Cosmochim. Acta (submitted)

    Google Scholar 

  • Van Cappellen P. (1991) The Formation of Marine Apatite. A Kinetic Study. Ph. D. Thesis, Yale University, 240 p.

    Google Scholar 

  • Van Cappellen P. and Berner R. A. (1988) A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments: Apatite precipitation. Amer. J. Sci. 288, 289–333.

    Google Scholar 

  • Van Cappellen P. and Berner R. A. (1991) Fluorapatite crystal growth from modified seawater solutions. Geochim. Cosmochim. Acta 55, 1219–1234.

    Google Scholar 

  • Wersin P. (1990) The Fe(II)-CO 2 H 2 O System in Anoxic Natural Waters: Equilibria and Surface Chemistry. Ph. D. Thesis, Swiss Federal Institute of Technology, Zürich, 153 p.

    Google Scholar 

  • Wersin P., Höhener P., Giovanoli R. and Stumm W. (1991) Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem. Geol. 90, 233–252.

    Google Scholar 

  • Westrich J. T. and Berner R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. 29, 236–249.

    Google Scholar 

  • Wheatcroft R. A., Jumars P. A., Smith C. R. and Nowell A. R. M. (1990) A mechanistic view of the particulate biodiffusion coefficient: Step lengths, rest periods and transport directions. J. Mar. Res. 48, 177–207.

    Google Scholar 

  • Wilson T. R. S., Thomson J., Colley S., Hydes D. J., Higgs N. C. and Sorensen J. (1985) Early organic diagenesis: The significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim. Cosmochim. Acta 49, 811–822.

    Google Scholar 

  • Winfrey M. R. and Ward D. M. (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Applied Env. Microbiol. 45, 193–199.

    Google Scholar 

  • Wollast R. (1992) Interactions of carbon and nitrogen cycles in the coastal zone. In: Interactions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie and L. Chou ). NATO ASI Series, Springer-Verlag, Berlin. (this volume)

    Google Scholar 

  • Wulff F., Stigebrandt A. and Rahm L. (1990) Nutrient dynamics in the Baltic Sea. Ambio 19, 126–133.

    Google Scholar 

  • Zhang J.-W. and Nancollas G. H. (1990) Mechanisms of growth and dissolution of sparingly soluble salts. In: Mineral-Water Interface Geochemistry (eds. M. F. Hochella and A. F. White). Mineral. Soc. Am., Reviews in Mineralogy 23, pp. 365–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Cappellen, P., Gaillard, JF., Rabouille, C. (1993). Biogeochemical Transformations in Sediments: Kinetic Models of Early Diagenesis. In: Wollast, R., Mackenzie, F.T., Chou, L. (eds) Interactions of C, N, P and S Biogeochemical Cycles and Global Change. NATO ASI Series, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76064-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76064-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76066-2

  • Online ISBN: 978-3-642-76064-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics