Skip to main content

Molecular Systematics, Microbial Ecology and Single Cell Analysis

  • Chapter
Particle Analysis in Oceanography

Part of the book series: NATO ASI Series ((ASIG,volume 27))

  • 181 Accesses

Abstract

Molecular approaches in taxonomy and systematics are providing a unifying framework for understanding the phylogenetic relationships of diverse biological species. The methods rely on comparison of nucleic acid or amino acid sequences, which can serve as yardsticks for measuring evolutionary divergence. Direct sequence analysis can largely circumvent problems inherent in phenotypic comparisons of widely divergent taxa. Macromolecular sequence information is particularly useful in situations where directly comparable phenotypic properties are scarce or difficult to assess. Additionally, macromolecular sequence data bases are valuable resources for determining the phylogenetic affiliations of previously unstudied or uncharacterized organisms. In particular, current understanding of the evolutionary relationships of microbial species has been greatly advanced through molecular phylogenetic comparisons of small subunit ribosomal RNA (rRNA) sequences.

The molecular data employed in systematic and evolutionary studies are also proving useful for ecological studies. By directly retrieving phylogenetically informative gene sequences from mixed microbial populations, it is possible to infer phylogenetic affiliations of individual population constituents. This allows identification of community members without requiring their cultivation, and so avoids some selective biases associated with pure culture methods. In addition, short segments of sequence, such as those found in small subunit rRNA, can be taxa-specific. These sequences may therefore serve as diagnostic markers for particular groups. In conjunction with epifluorescence microscopy, fluor-labeled, rRNA-targeted probes that bind to these diagnostic sequences may be used to determine the phylogenetic identity of individual cells. Thus, macromolecular sequence information can be employed to detect the presence of particular species, and to study their spatial and temporal variability. Recent applications, including molecular phylogenetic analyses of mixed bac terioplankton populations, demonstrate the utility of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Krumholz L, Stahl DA (1990a) Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762–770

    Google Scholar 

  • Amann RI, Binder BB, Olson RJ, Chisholm SW, Devereux, Stahl DA (1990b) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Google Scholar 

  • Baumann P, Baumann L, Woolkalis MJ, Bang SS (1983) Evolutionary relationships in Vibrio and Photobacterium: a basis for a natural classification. Ann Rev Microbiol 37:369–398

    Article  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989a) Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363.

    Article  Google Scholar 

  • DeLong EF, Schmidt TM, Pace NR (1989b) Analysis of single cells and oligotrophic picoplankton populations using 16S rRNA sequences. In: Hattori T, Ishida Y, Maruyama Y, Morita RY and A.Uchida, (eds) Recent Advances in Microbial Ecology. Jap Sci Soc Press, Tokyo, p 697

    Google Scholar 

  • DeLong EF, Shah J (1990) Fluorescent ribosomal RNA probes for clinical application: a research review. Diagnos Clinc Test 28:41–44.

    Google Scholar 

  • Ducklow HW (1983) Production and fate of bacteria in the oceans. Bioscience 33:494–501

    Article  Google Scholar 

  • Eckert KA, Kunkel TA (1990) High fidelity synthesis by the Thermus aquaticus DNA polymerase. Nuc Acid Res 18:3739–3744

    Article  Google Scholar 

  • Ennis PD, Zemmour J, Salter RD, Parham P (1990) Rapid cloning of HLA-A,B cDNA by using the polymerase chain reaction: frequency of errors produced in amplification. Proc Natl Acad Sci 87:2833–2837

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Quart. Rev. Biol. 57:379–404

    Article  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates: quantitative occurrence and importance as consumers of bacteria. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  • Ferguson RL, Buckley EN, Palumbo AL (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovanonni SJ, Gheslin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–550

    Article  Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Magrum L, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Article  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in surface waters: evaluation and field results. Mar Biol 62:1–12

    Article  Google Scholar 

  • Giovannoni S J, DeLong E F, Olsen G J, Pace N R. (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726.

    Google Scholar 

  • Giovanonni SJ, Britschgi TB, Moyer CL, Field KG (1990a) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  Google Scholar 

  • Giovanonni SJ, DeLong EF, Schmidt TM, Pace, NR (1990b) Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol 56:2572–2575

    Google Scholar 

  • Hagstrom A, Larsson U, Horstedt P, Normark S (1979) Frequency of dividing cells, a new approach to the determination of bacterial growth in aquatic environments. Appl Environ Microbiol 37:805–812

    Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Article  Google Scholar 

  • Jannasch HW, Jones GE (1959) Bacterial populations in seawater as determined by different methods of enumeration. Limnol Oceanog 4:128–139

    Article  Google Scholar 

  • Karl DM (1986) Determination of in situ biomass viability metabolism and growth. In Bacteria in Nature, J. S. Poindexter and E. R. Leadbetter, eds., pp 85–176, Plenum Press

    Google Scholar 

  • Lane, DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, and Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959.

    Article  Google Scholar 

  • Meyerhaus A, Vartanian J, Wain-Hobson S (1990) DNA recombination during PCR. Nuc Acid Res 18:1687–1691

    Article  Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 491–499

    Google Scholar 

  • Olsen, GJ (1988) Phylogenetic analysis using ribosomal RNA sequences. Meth Enzymol 164: 793–812

    Article  Google Scholar 

  • Olsen, GJ (1987) Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Springs Harbor Symp Quant Biol 52:825–837

    Google Scholar 

  • Pace, NR, Stahl DA, Lane DJ, and Olsen GJ (1986a) The analysis of natural microbial populations by ribosomal RNA sequences, In K. C. Marshall (ed.), Advances in microbial ecology, vol 9, Plenum Press, New York, p 1

    Google Scholar 

  • Pace NR, Olsen GJ, Woese CR (1986b) Ribosomal RNA phylogeny and the primary lines of descent. Cell 45:325–326

    Article  Google Scholar 

  • Sakai RK, Gelfand DH, Stoffel S, Scharf S, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–493

    Article  Google Scholar 

  • Schleifer KH and Stackebrandt E (1983) Molecular systematics of prokaryotes. Ann Rev Microbiol 37: 143–187

    Article  Google Scholar 

  • Schmidt TM, DeLong EF and Pace NR (1990) Comparison of marine picoplankton communities: phylogenetic analysis of cloned rDNAs from a natural picoplankton population, submitted

    Google Scholar 

  • Sieburth JM (1988) The trophic roles of bacteria in marine ecosystems are complicated by synergistic consortia and mixotrophic cometabolism. Prog Oceanog 21:117–128

    Article  Google Scholar 

  • Stackebrandt E, Murray RGE, Truper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the Purple bacteria and their relatives Int J Sys Bacterid 38:321–325

    Article  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR, and Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminai microbial ecology. Appl Environ Microbiol 54:1079–1084

    Google Scholar 

  • Swofford DL and Olsen, GJ (1990) Phylogeny reconstruction In D. M. Hillis, and C. Moritz (eds.) Molecular systematics, Sinauer Assoc. Inc. Sunderland, MA.,pp 411–501

    Google Scholar 

  • Tsien HC, Bratina BJ, Tsuji K, and Hanson RS (1990). Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol 56:2858–2865

    Google Scholar 

  • Tomioka, N, Sugiura, M (1983) The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol Gen Genet 191:46–50

    Article  Google Scholar 

  • Wallace, R B and Miyada CG (1987) Oligonucleotide probes for the screening of recombinant DNA libraries. Meth Enzymol 152:432–433

    Article  Google Scholar 

  • Ward DM, Weiler, R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    Article  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Wide-spread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294

    Article  Google Scholar 

  • Waterbury JB, Wiley JM, Franks DG, Valois FW, Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230:74–76

    Article  Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt T, Li WKW, (eds.) Photosynthetic picoplankton. Can Bull Fish Aquat Sci vol 214, p71–120

    Google Scholar 

  • Weiler R, Ward DM (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55:1818–1822.

    Google Scholar 

  • Wilson AC, Carlson SC, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46:573–639

    Article  Google Scholar 

  • Woese CR (1987) Bacterial Evolution. Microbiol Rev 51:221–271.

    Google Scholar 

  • Woese CR, Kandier O, and Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  Google Scholar 

  • Yang DC, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    Article  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theo Biol 8:357–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DeLong, E.F. (1991). Molecular Systematics, Microbial Ecology and Single Cell Analysis. In: Demers, S. (eds) Particle Analysis in Oceanography. NATO ASI Series, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75121-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75121-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75123-3

  • Online ISBN: 978-3-642-75121-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics