Skip to main content

Physical Determinants of Phytoplankton Succession

  • Chapter
Plankton Ecology

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Just as the composition of phytoplankton assemblages depends upon the presence and relative abundances of populations of individual species, so temporal changes in their composition are brought about by differences in the relative rates of augmentation and attrition of each population. These rates respond to a complex of interactions among various physical, chemical, and biotic environmental factors, operating at a variety of intensities and frequencies. This chapter addresses the impact of essentially physical variables on the population dynamics of individual species and it seeks to establish the particular properties of the organisms for which each selects. Factual information relating the performances of algae to quantifiable aspects of the physical environment is drawn largely from observations made in controlled laboratory experiments. Realistic potential combinations of the relevant physical factors are suggested in order to simulate the likely responses of specific populations in natural waters. The outcomes of such simulations are then compared with the PEG-model of phytoplankton succession (see Section 1.2) propounded by Sommer et al. (1986), which was originally elaborated to explain the pattern of seasonal change in species dominance, as regularly observed in Lake Constance (the Bodensee). A concluding section assesses the role of physical factors in regulating seasonal succession of phytoplankton generally. At the end of the chapter, beginning on page 52, there are three appendices. The first one, Appendix 2.1, defines the units used in this chapter. The second, Appendix 2.2, identifies the symbols used, and Appendix 2.3 explains the abbreviations used for algal names.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allanson, B.R. and Hart, R.C. 1979. Limnology of P.K. Le Roux Dam. Reports, Rhodes University Institute for Freshwater Studies 11 (7): 1–3.

    Google Scholar 

  • Allen, T.F.H. and Koonce, J.F. 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology 54: 1234–47.

    Article  Google Scholar 

  • Anderson, E.R. 1952. Energy-budget studies: water-loss investigations. Vol. I. Lake Hefner Studies. Technical Reports, U.S. Geological Survey No. 229: 71–119.

    Google Scholar 

  • Blanton, J.O. 1973. Vertical entrainment into the epilimnia of stratified lakes. Limnology and Oceanography 18: 697–704.

    Article  Google Scholar 

  • Bowling, L.C., Steane, M.S., and Tyler, P.A. 1986. The spectral distribution and attenuation of underwater irradiance in Tasmanian inland waters. Freshwater Biology 16: 313–335.

    Article  Google Scholar 

  • Brierly, S. 1985. The effects of artificial overturn on algal populations. Research and Development Project Report RP85-070. Severn-Trent Water Authority, Birmingham, U.K.

    Google Scholar 

  • Dauta, A. 1982. Conditions de développement du phytoplancton: Étude comparative du comportement de huit espéces en culture. I. Détermination des parametres de croissance en fonction de la lumiére et de la température. Annales de Limnologie 18: 217–262.

    Article  Google Scholar 

  • Denman, K.L. and Gargett, A.E. 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnology and Oceanography 28: 801–815.

    Article  Google Scholar 

  • Dillon, T.M. and Caldwell, D.R. 1980. The Batchelor spectrum and dissipation in the upper ocean. Journal of Geophysical Research 85: 1910–1916.

    Article  Google Scholar 

  • Foy, R.H., Gibson, C.E., and Smith, R.V. 1976. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. British Phycological Journal 11: 151–163.

    Article  Google Scholar 

  • Ganf, G.G. 1974. Incident solar irradiance and underwater light penetration as factors controlling the chlorophyll a content of a shallow equatorial lake (Lake George, Uganda). Journal of Ecology 62: 593–609.

    Article  CAS  Google Scholar 

  • Gates, D.M. 1962. Energy Exchange in the Biosphere. Harper and Row, New York.

    Google Scholar 

  • Gates, D.M. 1972. Man and His Environment: Climate. Harper and Row, New York.

    Google Scholar 

  • George, D.G. 1982. The spatial distribution of nutrients in the south basin of Windermere. Freshwater Biology 11: 405–424.

    Article  Google Scholar 

  • George, D.G. and Edwards, R.W. 1976. The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutrophic reservoir. Journal of Applied Ecology 13: 667–690.

    Article  CAS  Google Scholar 

  • Gibson, C.E. 1987. Adaptations in Oscillatoria redekei at very slow growth rates—changes in growth efficiency and phycobilin complement. British Phycological Journal 22: 187–191.

    Article  Google Scholar 

  • Harris, G.P. 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebnisse der Limnologie 10: 1–163.

    Google Scholar 

  • Harris, G.P. 1986. Phytoplankton Ecology. Chapman and Hall, London.

    Book  Google Scholar 

  • Heaney, S.I. and Butterwick, C. 1985. Comparative mechanisms of algal movement in relation to phytoplankton production, pp. 114–134, in Rankin, M.A. (editor), Migration: Mechanisms and Adaptive Significance. University of Texas Press, Austin.

    Google Scholar 

  • Hoogenhout, H. and Amesz, J. 1965. Growth rates of photosynthetic microorganisms in laboratory cultures. Archiv für Mikrobiologie 50: 10–25.

    Article  Google Scholar 

  • Humphries, S.E. and Imberger, J. 1982. The Influence of the Internal Structure and Dynamics ofBurrinjuck Reservoir on Phytoplankton Blooms. Environmental Dynamics Report ED82-023. University of Western Australia, Nedlands.

    Google Scholar 

  • Hutchinson, G.E. 1957. A Treatise on Limnology, Vol. I. Wiley, New York.

    Google Scholar 

  • Hutchinson, G.E. 1967. A Treatise on Limnology, Vol. II. Introduction to Lake Biology and the Limnoplankton. Wiley, New York.

    Google Scholar 

  • Imberger, J. 1985. The diurnal mixed layer. Limnology and Oceanography 30: 737–770.

    Article  Google Scholar 

  • Imberger, J. and Hamblin, P.F. 1982. Dynamics of lakes, reservoirs and cooling ponds. Annual Review of Fluid Mechanics 14: 153–187.

    Article  Google Scholar 

  • Kirk, J.T.O. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Konopka, A.E. and Brock, T.D. 1978. Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota. Applied and Environmental Microbiology 36: 572–576.

    PubMed  CAS  Google Scholar 

  • Kuhn, W. 1978. Aus Wärmehaushalt und Klimadaten berechnete Verdunstung des Zürichsees. Viertaljahrsschrift der Naturforschenden Gesellschaft in Zürich 23: 261–283.

    Google Scholar 

  • Larkum, A.W.D. and Barrett, J. 1983. Light harvesting processes in algae, pp. 1–219, in Woolhouse, H.W. (editor), Advances in Botanical Research, Vol 10. Academic Press, London.

    Google Scholar 

  • Lewis, W.M. 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. Journal of Ecology 66: 849–880.

    Article  Google Scholar 

  • Marti, v.D.E. and Imboden, D.M. 1986. Thermische Energieflüsse an der Wasseroberfläche: Beispiel Sempachersee. Schweizerische Zeitschrift für Hydrologie 48: 196–229.

    Article  Google Scholar 

  • Nicklisch, A. and Kohl, J.-G. 1983. Growth rates of Microcystis aeruginosa (Kütz.) as a basis for modelling its population dynamics. Internationale Revue des gesamenten Hydrobiologie 68: 317–326.

    Article  Google Scholar 

  • Niiler, P.P. and Kraus, E.G. 1977. One dimensional models of the upper ocean, pp. 143–172, in Kraus, E.G. (editor), Modelling and Prediction of the Upper Layers of the Ocean. Pergamon Press, Oxford.

    Google Scholar 

  • Oakey, N.S. and Elliott, J.A. 1982. Dissipation within the surface mixed layer. Journal of Physical Oceanography 12: 171–185.

    Article  Google Scholar 

  • Odum, E.P. 1969. The strategy of ecosystem development. Science 164: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, O.M. 1977. Entrainment, pp. 92–101, in Kraus, E.G. (editor), Modelling and Prediction of the Upper Layers of the Ocean. Pergamon Press, Oxford.

    Google Scholar 

  • Raven, J.A. 1984. A cost-benefit analysis of photon absorption by photosynthetic cells. New Phytologist 98: 593–625.

    Article  CAS  Google Scholar 

  • Reynolds, C.S. 1983. A physiological interpretation of the dynamic responses of populations of a planktonic diatom to physical variability of the environment. New Phytologist 95: 41–53.

    Article  Google Scholar 

  • Reynolds, C.S. 1984a. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C.S. 1984b. Phytoplankton periodicity; the interaction of form, function and environmental variability. Freshwater Biology 14: 111–142.

    Article  Google Scholar 

  • Reynolds, C.S. 1987. Community organization in the freshwater plankton, pp. 297–325, in Gee, J.H.R. and Giller, P.S. (editors), The Organization of Communities, Past and Present. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Reynolds, C.S. 1988a. Functional morphology and the adaptive strategies of freshwater phytoplankton, pp. 388–433, in Sandgren, C.D. (editor), Growth and Survival Strategies of Freshwater Phytoplankton. Cambridge University Press, New York.

    Google Scholar 

  • Reynolds, C.S. 1988b. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 23: 683–691.

    Google Scholar 

  • Reynolds, C.S., Harris, G.P., and Goudney, D.N. 1985. Comparison of carbon-specific growth rates and rates of cellular increase of phytoplankton in large limnetic enclosures. Journal of Plankton Research 7: 791–820.

    Article  Google Scholar 

  • Reynolds, C.S. and Reynolds, J.B. 1985. The atypical seasonality of phytoplankton in Crose Mere, 1972: an independent test of the hypothesis that variability in the physical environment regulates community dynamics and structure. British Phycological Journal 20: 227–242.

    Article  Google Scholar 

  • Reynolds, C.S., Tundisi, J.G., and Hino, K. 1983. Observations on a metalimnetic Lyngbya population in a stably stratified tropical lake (Lagoa Carioca, Eastern Brasil). Archiv für Hydrobiologie 97: 7–17.

    Google Scholar 

  • Reynolds, C.S., Wiseman, S.W., and Clarke, M.J.O. 1984. Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. Journal of Applied Ecology 21: 11–39.

    Article  Google Scholar 

  • Smayda, T.J. 1970. The suspension and sinking of phytoplankton in the sea. Annual Review of Oceanography and Marine Biology 8: 353–414.

    Google Scholar 

  • Smith, I.R. 1975. Turbulence in lakes and rivers. Scientific Publications of the Freshwater Biological Association No. 29: 1–79.

    Google Scholar 

  • Smith, I.R. 1982. A simple theory of algal deposition. Freshwater Biology 12: 445–449.

    Article  Google Scholar 

  • Sommer, U. 1981. The role of r- and K- selection in the succession of phytoplankton in Lake Constance. Acta Oecologica 2: 237–242.

    Google Scholar 

  • Sommer, U. 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.

    Article  Google Scholar 

  • Sommer, U. and Gliwicz, Z.M. 1986. Long range vertical migration of Volvox in tropical lake Cahora Bassa (Mozambique). Limnology and Oceanography 31: 650–653.

    Article  Google Scholar 

  • Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A. 1986. The P.E.G.-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Spigel, R.H., Imberger, J., and Rayner, K.N. 1986. Modelling the diurnal mixed layer. Limnology and Oceanography 31: 533–556.

    Article  Google Scholar 

  • Steel, J.A. 1976. Eutrophication and the operational management of reservoirs of the Thames Water Authority, Metropolitan Water Division, pp. J1–J12 in IPHE, Eutrophication of Lakes and Reservoirs. Institute of Public Health Engineers, London.

    Google Scholar 

  • Stokes, G.G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9 (2): 8–14.

    Google Scholar 

  • Stommel, H. 1949. Horizontal diffusion due to oceanic turbulence. Journal of Marine Research 8: 199–225.

    Google Scholar 

  • Tailing, J.F. 1957. The phytoplankton population as a compound photosynthetic system. New Phytologist 56: 133–149.

    Article  Google Scholar 

  • Tailing, J.F., Wood, R.B., Prosser, M.V., and Baxter, R.M. 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwater Biology 3: 53–76.

    Article  Google Scholar 

  • Tamiya, H., Iwamura, T., Shibata, K., Hase, E., and Nihei, T. 1953. Correlation between photosynthesis and light-independent metabolism in the growth of Chlorella. Biochimica et Biophysica Acta 12: 23–40.

    Article  CAS  Google Scholar 

  • Trimbee, A.M. and Harris, G.P. 1983. Use of time-series analysis to demonstrate ad- vection rates of different variables in a small lake. Journal of Plankton Research 5: 819–833.

    Article  Google Scholar 

  • Vollenwieder, R.A. 1965. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production. Memorie dell’lstituto italiano di Idrobiologia 18 (Suppl.): 425–457.

    Google Scholar 

  • Walsby, A.E. and Reynolds, C.S. 1980. Sinking and floating, pp. 371–412, in Morris, I. (editor), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Sommer

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

About this chapter

Cite this chapter

Reynolds, C.S. (1989). Physical Determinants of Phytoplankton Succession. In: Sommer, U. (eds) Plankton Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74890-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74890-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74892-9

  • Online ISBN: 978-3-642-74890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics