Skip to main content

Physiologische Grundlagen der Insulinsubstitution

  • Conference paper

Summary

Insulin replacement in an insulin deficient state has been a routine treatment since more than 60 years, but the strategy applied remains a conventional pharmacological one for the majority of patients. Attempts to mimic more closely physiological insulin release when designing strategies of insulin replacement were delayed by the success of conventional insulin treatment in reducing the incidence of diabetic ketoacidosis and coma. However, the rising prevalence of diabetes associated complications forced a reappraisal of the available forms of insulin therapy. From this it was concluded that algorithms for more appropriate insulin replacement must be derived from normal endogenous insulin release. Such a strategy perceives basal (=fasting) and prandial insulin requirement as separate and independent entities and requires the patient to correct immediately blood glucose values beyond given target levels. Such functional insulin treatment permits up to 50% of type I diabetic patients to consistently renormalize their HbA1c levels, and helps pregnant type I diabetic patients to maintain near-euglycemia throughout pregnancy. It is the aim of this overview to discuss physiological knowledge of insulin release and carbohydrate metabolism pertinent to the design of a rational strategy for functional insulin treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Waldhäusl WK (1986) The physiological basis of insulin treatment - clinical aspects. Diabetologia 29: 837–849

    Article  PubMed  Google Scholar 

  2. Waldhäusl WK, Gasic S, Bratusch-Marrain P, Nowotny P (1983) The 75-g oral glucose tolerance test: effect on splanchnic metabolism of substrates and pancreatic hormone release in healthy man. Diabetologia 25: 489–495

    Article  PubMed  Google Scholar 

  3. Kleinbaum J, Shamoon H (1982) Selective counterregulatory hormones responses after oral glucose in man. J Clin Endocrinol Metab 55: 787–790

    Article  PubMed  CAS  Google Scholar 

  4. Waldhäusl WK, Gasic S, Bratusch-Marrain P, Korn A, Nowotny P (1982) Feedback inhibition by biosynthetic human insulin of insulin release in healthy human subjects. Am J Physiol 243: E476–E482

    PubMed  Google Scholar 

  5. Waldhäusl W, Bratusch-Marrain P, Gasic S, Komjati M, Heding L (1986) Inhibition by proinsulin of endogenous, C-peptide release in healthy man. Am J Physiol 251: E139–E145

    PubMed  Google Scholar 

  6. Gerich JE (1981) Somatostatin Vol 1. In: Brownlee M (ed) Diabetes mellitus. Wiley, New York, pp 297–354

    Google Scholar 

  7. Waldhäusl W, Bratusch-Marrain P, Dudczak R, Deutsch E (1977) The diabetogenic action of somatostatin in healthy subjects and in maturity onset diabetics. J Clin Endcrinol Metab 44: 876–883

    Article  Google Scholar 

  8. Fajans SS, Conn JW (1965) Prediabetes subclinical diabetes and latent clinical diabetes. In: Leibel BS, Wrenshall GH (eds). On the nature and treatment of diabetes. Excerpta Medica Foundation, Amsterdam, pp 641–656

    Google Scholar 

  9. Lang A, Matthews DR, Pero J, Turner RC (1979) Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N Engl J Med 301: 1023–1027

    Article  PubMed  CAS  Google Scholar 

  10. Hansen BC, Jen KLC, Pek SB, Wolfe RA (1982) Rapid oscillations in plasma insulin, glucagon und glucose in obese and normal weight humans. J Clin Endocrinol Metab 54: 785–792

    Article  PubMed  CAS  Google Scholar 

  11. Komjati M, Bratusch-Marrain PR, Waldhäusl W (1986) Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose production in vitro. Endocrinology 11: 312–319

    Article  Google Scholar 

  12. Bratusch-Marrain PR, Komjati M, Waldhäusl W (1986) Efficacy of pulsatile versus continuous insulin administration on hepatic glucose production and glucose utilization in insulin dependent diabetic man. Diabetes 35: 922–926

    Article  PubMed  CAS  Google Scholar 

  13. Field JB (1973) Extraction of insulin by liver. Am Rev Med 24: 309–326

    Article  CAS  Google Scholar 

  14. Eaton RP, Allen RC, Schade JS (1983) Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J Clin Endocrinol Metab 56: 1294–1300

    Article  PubMed  CAS  Google Scholar 

  15. Unger RH, Raskin P, Srikant CB, Orci L (1977) Glucagon and the A-cells. Ree Progr Horm Res 33: 477–517

    Google Scholar 

  16. Waldhäusl W, Bratusch-Marrain P, Gasic S, Korn A, Nowotny P (1979) Insulin production rate following glucose ingestion estimated by splanchnic C-peptide output in normal man. Diabetologia 17: 221–227

    Article  PubMed  Google Scholar 

  17. Waldhäusl W, Bratusch-Marrain P (1987) Factors regulating the disposal of an oral glucose load in normal, diabetic and obese subjects. Diabetes/Metabolism Reviews 3: 79–109

    Article  PubMed  Google Scholar 

  18. Waldhäusl W, Bratusch-Marrain PR, Francesconi M, Nowotny P, Kiss A (1982) Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin dependent diabetic patients. Diabetes Care 5: 18–24

    Article  PubMed  Google Scholar 

  19. Ferranini E, Björkman O, Reichard GH, Pil A, Olsson M, Wahren J, DeFronzo R (1985) The disposal of an oral glucose load in healthy subjects. Diabetes 34: 580–588

    Article  Google Scholar 

  20. Radziuk J, McDonald TJ, Rubenstein D, Dupre J (1978) Initial splanchnic extraction of ingested glucose in normal man. Metabolism 27: 657–669

    Article  PubMed  CAS  Google Scholar 

  21. Katz LD, Glickman MG, Rapoport S, Ferranini E, DeFronzo RA (1983) Splanchnic and peripheral disposal of oral glucose in man. Diabetes 32: 675–679

    Article  PubMed  CAS  Google Scholar 

  22. Nickelson MJ, Butterfield WJH (1971) Peripheral glucose uptake during the oral glucose tolerance in normal and obese subjects and borderline and frank diabetes. Clin J Med 40: 261–273

    Google Scholar 

  23. Zinman B, Murray FT, Vranic M, Albisser AM, Leibel BS, McClean PA, Marliss EB (1977) Glucoregulation during moderate exercise in insulin treated diabetics. J Clin Endocrinol Metab 45: 641–652

    Article  PubMed  CAS  Google Scholar 

  24. Lawrence RD (1926) The effects of exercise on insulin action in diabetes. Br Med J 1: 648–652

    Article  PubMed  CAS  Google Scholar 

  25. Pequignot JM, Peyrin L, Peres G (1980) Catecholamines fuel interrelationship during exercise in fasting men. J Appl Physiol 48: 109–113

    PubMed  CAS  Google Scholar 

  26. Hansen I, Firth R, Haymond M, Cryer P, Rizza R (1986) The role of autoregulation of the hepatic glucose production in man. Diabetes 35: 186–191

    Article  PubMed  CAS  Google Scholar 

  27. James DE, Burleigh KM, Kreagen EW (1985) Time dependence of insulin action in muscle and adipose tissue in the rat in vivo. Diabetes 34: 1049–1054

    Article  PubMed  CAS  Google Scholar 

  28. Bogardus C, Thuillez P, Ravussin E, Vasquez B, Namiriga M, Azhar S (1983) Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest 72: 1605–1610

    Article  PubMed  CAS  Google Scholar 

  29. Calles J, Cunningham JJ, Nelson L, Brown N, Nadel E, Sherwin RS, Felig P (1983) Glucose turnover during recovery from intensive exercise. Diabetes 32: 734–738

    PubMed  CAS  Google Scholar 

  30. Deibert DC, DeFronzo RA (1980) Epinephrine induced insulin resistance in man - a Beta- receptor mediated phenomenon. J Clin Invest 65: 717–721

    Article  PubMed  CAS  Google Scholar 

  31. Shamoon H, Hendler R, Sherwin RS (1980) Altered responsiveness to Cortisol, epinephrine and glucagon in insulin-infused juvenile onset diabetes. A mechanism for diabetic instability. Diabetes 29: 284–291

    Article  PubMed  CAS  Google Scholar 

  32. Bratusch-Marrain P, Gasic S, Waldhäusl WK, Nowotny P, Komjati M, Korn A (1987) The effect of growth hormone on splanchnic glucose and substrate metabolism following oral glucose loading in healthy man. Diabetes 33: 19–25

    Article  Google Scholar 

  33. Waldhäusl WK, Gasic S, Bratusch-Marrain P, Komjati M, Korn A (1987) Effect of stress hormones on splanchnic substrate and insulin disposal following glucose ingestion in healthy man. Diabetes 36: 127–135

    Article  PubMed  Google Scholar 

  34. Bratusch-Marrain P, Waldhäusl W, Grubeck-Loebenstein B, Korn A, Vierhapper H, Nowotny P (1981) The role of diabetogenic hormones on carbohydrate and lipid metabolism following oral glucose loading in insulin dependent diabetics: effects of acute hormone adminstration. Diabetologia 21: 387–393

    Article  PubMed  CAS  Google Scholar 

  35. Waldhäusl W, Kleinberger G, Korn A, Dudczak R, Bratusch-Marrain P, Nowotny P (1979) Severe hyperglycemia: effects of rehydration on endocrine derangements and blood glucose concentration. Diabetes 28: 577–584

    PubMed  Google Scholar 

  36. Cori CF, Cori GF (1928) The mechanism of epinephrine action II. The influence of epinephrine and insulin on the carbohydrate metabolism of rats in the postabsorptive state. J Biol Chem 19: 321–341

    Google Scholar 

  37. Houssay BA, Penhos JC (1956) Diabetogenic action of pituitary hormones on adrenalectomized hypophysectomized dogs. Endocrinology 59: 637–641

    Article  PubMed  CAS  Google Scholar 

  38. Bratusch-Marrain P, DeFronzo RA (1983) Impairment of insulin mediated glucose metabolism by hyperosmolality in man. Diabetes 32: 1028–1034

    Article  PubMed  CAS  Google Scholar 

  39. Komjati M (1982) Einfluß der Osmolalität auf Kohlenhydratstoffwechsel und Ketogenese in vivo. Thesis, TU Wien

    Google Scholar 

  40. Schmidt M, Hadji-Georgopoulos A, Rendell M, Margolis S; Kowarski A (1981) The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Care 5: 579–585

    Article  Google Scholar 

  41. Somogyi M (1938) Insulin as a cause of extreme hyperglycemia and instability. Bull St Louis Med Soc 32: 498–500

    Google Scholar 

  42. Boller R, Pilgerstorfer W (1938) Blutzuckerstudie über Protamin-Zink-Insulin. ZS Klin Med 134: 300–320

    Google Scholar 

  43. Joslin EP, Gray H, Root HF (1922) Insulin in hospital and home. J Metab Res 2: 651–699

    CAS  Google Scholar 

  44. Schmidt M, Hadji-Georgopoulos A, Rendell M, Magolis S, Kowarski D, Kowarski AA (1979) Fasting hyperglycemia and associated free insulin and Cortisol changes in “Somogyiike” patients. Diabetes Care 2: 457–464

    Google Scholar 

  45. Molnar GD, Fatourechi V, Ackerman E, Taylor WF, Rosevear JW, Gatewood LC, Service FJ, Moxness KE (1971) Growth hormone and glucose interrelationships in diabetes: studies of inadvertent hypoglycemic episodes during continuous blood glucose analysis. J Clin Endocrinol Metab 32: 426–437

    Article  PubMed  CAS  Google Scholar 

  46. Olefsky S, Shreeve DR, Sutcliffe CH (1974) Brittle diabetes. Q J Med 43: 113–125

    Google Scholar 

  47. Bolli G, Irving S, Gottesman IS, Campbell PJ, Haymond MW, Cryer PE, Gerich JE (1984) Glucose counterregulation and waning of insulin in the Somogyi phenomenon (posthypoglycemic hyperglycemia). N Engl J Med 311: 1214–1219

    Article  PubMed  CAS  Google Scholar 

  48. Mintz DH, Finster JL, Taylor AL, Fefer A (1968) Hormonal genesis of glucose intolerance following hypoglycemia. Am J Med 45: 187–197

    Article  PubMed  CAS  Google Scholar 

  49. Oakley NW, Jacobs HS, Turner RC, Williams J, Aquino CS, Nabarro JDN (1970) The effect of hypoglycemia on oral glucose tolerance in normal subjects and patients with pituitary and adrenal disorders. Clin Sci 39: 663–674

    PubMed  CAS  Google Scholar 

  50. Waldhäusl W, Howorka K, Derfler K, Bratusch-Marrain PR, Holler C, Zyman H, Freyler H (1985) Failure and efficacy of insulin therapy in insulin dependent (Type I) diabetic patients. Acta diabetol lat 22: 279–294

    Article  PubMed  Google Scholar 

  51. Derfler K, Waldhäusl W, Zyman HJ, Howorka K, Holler C, Freyler H (1986) Diabetes Care in a rural area: clinical and metabolic evaluation. Diabetes Care 9: 509–517

    Article  PubMed  CAS  Google Scholar 

  52. Berger M, Jörgens V, etal (1983) Praxis der Insulintherapie. Springer, Berlin Heidelberg New York Tokyo (2. Auflage 1986 )

    Google Scholar 

  53. Riddle MC (1985) New tactics for type 2 diabetes: regimes based on intermediate acting insulin taken at bedtime. Lancet I: 192–194

    Google Scholar 

  54. Waldhäusl W, Howorka K, Bratusch-Marrain P (1988) Konventionelle oder funktionelle Insulintherapie. Wien Klin Wschr 100: 430–435

    PubMed  Google Scholar 

  55. Pfeiffer EF, Thum Ch, Clemens AH (1974) Die künstliche Betazelle. Naturwissenschaften 61: 455

    Article  PubMed  CAS  Google Scholar 

  56. Schade DS, Santiago JV, Skyler JS, Rizza RA (1983) Intensive insulin therapy, Excerpta Medica, Amsterdam

    Google Scholar 

  57. Hepp KD, Renner R, v Funke JH, Mehnert H, Haerten R, Kresse H (1975) Intravenous insulin therapy under conditions imitating physiological profiles. Diabetologia 11: 349

    Google Scholar 

  58. Tamborlane WV, Sherwin RS, Genel M, Felig P (1980) Outpatient treatment of juvenile onset diabetes with a preprogrammed pro table subcutaneous insulin infusion system. Am J Med 68: 190–196

    Article  PubMed  CAS  Google Scholar 

  59. Czerwenka-Howorka K, Bratusch-Marrain P, Waldhäusl W (1984) Algorithmen der nor- moglykämischen Insulinsubstitution der Typ I-Diabetes. Erste Langzeitergebnisse. Wien Klin Wochenschr 96: 558–559

    Google Scholar 

  60. Howorka K (1987) Funktionelle, nahe-normoglykämische Insulinsubstitution. Lehrinhalte, Praxis und Didaktik. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  61. Schober E, Borkenstein M, Frisch H (1987) Basis-Bolus-Therapie bei diabetischen Kindern und Jugendlichen unter Verwendung des Novo Pens. Wien Klin Wochenschr 99: 312–313

    PubMed  CAS  Google Scholar 

  62. Feiks A, Howorka K, Nowotny C, Dadak C, Waldhäusl W (1987) Diabetes mellitus Typ I und Schwangerschaft: Ein interdisziplinäres Betreuungsprogramm. Wien Klin Wochenschr 99: 228–232

    PubMed  CAS  Google Scholar 

  63. Stolte K, Wolff J (1939) Die Behandlung der kindlichen Zuckerkrankheit mit freigewählter Kost. Erg Inn Med Kinderheilkd 56: 154–193

    Article  Google Scholar 

  64. Howorka K, Waldhäusl W (1986) Feasibility of long-term near-normoglycaemic insulin substitution (NIS) by multiple injections. In: Proceedings of the 2nd Assisi International Symposium on Advanced Models for the Therapy of Insulin-Dependent Diabetes, 20. 23. 4. 1986. Raven Press

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag · Heidelberg

About this paper

Cite this paper

Waldhäusl, W. (1990). Physiologische Grundlagen der Insulinsubstitution. In: Bretzel, R.G. (eds) Diabetes mellitus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74610-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74610-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74611-6

  • Online ISBN: 978-3-642-74610-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics