Skip to main content

Nutrient Status and Toxicity Problems in Acid Soils

  • Chapter
Soil Acidity

Abstract

For the purposes of this chapter, an acid soil will be considered as one with a pH value below 7, although serious problems associated with soil acidity are seldom encountered above a pH value of 5.5. Such soils can be very broadly grouped into those the acidity of which stems largely from natural weathering processes and those in which acidity has developed anthropogenically. The major difference between these two groups lies in the mineralogical composition of the clay fraction with the former typically being dominated by kaolinitic, sesquioxidic mineralogy and the latter by a less weathered suite of minerals including a significant 2:1 layer silicate component. This difference in mineralogical composition becomes important in the management of acid soils because the variable charge developed in the former group changes markedly with pH thus having a far greater influence on the capacity of the soil to hold nutrients than in the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams F (1974) Soil solution. In: Carson EW (ed) The plant root and its environment. Univ Press Virginia, Charlottesville, pp 441–482

    Google Scholar 

  • Adams F (1984) Crop response to liming in the southern United States. In: Adams F (ed) Soil acidity and liming. 2nd edn. Am Soc Agron Monogr 12:211–266

    Google Scholar 

  • Adams F, Martin JB (1984) Liming effects on nitrogen use and efficiency. In: Hauck RD (ed) Nitrogen in crop production. Am Soc Agron, Madison, Wisconsin

    Google Scholar 

  • Adams F, Rawajfih Z (1977) Basaluminite and alunite: a possible cause of sulfate retention by acid soils. Soil Sci Soc Am J 41:686–692

    Article  CAS  Google Scholar 

  • Adams F, Wear JI (1957) Manganese toxicity and soil acidity in relation to crinkle leaf of cotton. Soil Sci Soc Am Proc 21:305–308

    Article  CAS  Google Scholar 

  • Aguilar AS, van Diest A (1981) Rock-phosphate mobilization induced by the alkaline uptake pattern of legumes utilizing symbolically fixed nitrogen. Plant Soil 61:27–42

    Article  Google Scholar 

  • Alexander M (1980) Effects of acidity on microorganisms and microbial processes in soils. In: Hutchinson T, Havas M (eds) Effects of acid precipitation on terrestrial ecosystems. Plenum Press, NY

    Google Scholar 

  • Alva AK, Edwards DG, Asher CJ, Blarney FPC (1986a) Effects of phosphorus/aluminum molar ratio and calcium concentration on plant response to aluminum toxicity. Soil Sci Soc Am J 50:133–137

    Article  CAS  Google Scholar 

  • Alva AK, Edwards DG, Asher CJ, Blarney FPC (1986b) Relationship between root length of soybean and calculated activities of aluminum monomer in nutrient solution. Soil Sci Soc Am J 50:959–962

    Article  CAS  Google Scholar 

  • Amacher MC (1984) Determination of ionic activities in soil solutions and suspensions: principal limitations. Soil Sci Soc Am J 48:519–524

    Article  CAS  Google Scholar 

  • Amarasiri SL, Olsen SR (1973) Liming as related to solubility of P and plant growth in an acid tropical soil. Soil Sci Soc Am Proc 37:716–721

    Article  Google Scholar 

  • Andrew CS (1978) Mineral characterization of tropical forage legumes. In: Andrew CS, Kamprath EJ (eds) Mineral nutrition of legumes in tropical and subtropical soils. CSIRO, East Melbourne, Australia

    Google Scholar 

  • Baham J (1984) Prediction of ion activities in soil solutions: computer equilibrium modelling. Soil Sci Soc Am J 48:525–531

    Article  CAS  Google Scholar 

  • Bartlett RJ, Riego DC (1972) Effect of chelation on the toxicity of aluminum. Plant Soil 37:419–423

    Article  CAS  Google Scholar 

  • Beckett PHT (1964) Studies on soil potassium. I. Confirmation of the ratio law: measurement of potassium potential. J Soil Sci 15:1–8

    Article  CAS  Google Scholar 

  • Bennet RJ, Breen CM, Fey MV (1986) The effects of aluminum on root cap function and root development in Zea mays L. Exp Environ Bot 27:91–104

    Article  Google Scholar 

  • Bingham FT, Page AL, Coleman NT, Flach K (1971) Boron adsorption characteristics of selected amorphous soils from Mexico and Hawaii. Soil Sci Soc Am Proc 35:546–550

    Article  CAS  Google Scholar 

  • Blamey FPC, Edwards DG, Asher CJ (1983) Effects of aluminum, OH: Al and P: Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci 136:197–207

    Article  CAS  Google Scholar 

  • Bloom PR, McBride MB, Weaver RM (1979) Aluminum organic matter in acid soils: buffering and solution aluminum activity. Soil Sci Soc Am J 43:488–493

    Article  CAS  Google Scholar 

  • Bremner JM (1978) Effects of soil processes on the atmospheric concentration of nitrous oxide. In: Nielson DR (ed) Nitrogen in the environment. I. Nitrogen behavior in field soil. Academic Press, Lond NY

    Google Scholar 

  • Bromfield SM (1979) Manganous ion oxidation at pH values below 5.0 by cell free substrates from Streptomyces sp. cultures. Soil Biol Biochem 11:115–118

    Article  CAS  Google Scholar 

  • Buyeye SM, Fey MV, Mott CJB (1985) Maize growth and acid soil responses to treatment with gypsum and lime. Proc 15th Congr S Afr Soc Crop Prod, Pietermaritzburg S Afr Soc Crop Prod, Coetzenburg, pp 366–383

    Google Scholar 

  • Cameron RS, Ritchie GSP, Robson AD (1986) Relative toxicities of inorganic aluminum complexes to barley. Soil Sci Soc Am J 50:1231–1236

    Article  CAS  Google Scholar 

  • Chang ML, Thomas GW (1963) A suggested mechanism for sulfate adsorption by soils. Soil Sci Soc Am Proc 27:281–283

    Article  CAS  Google Scholar 

  • Clark JS, Peech M (1955) Solubility criteria for the existence of calcium and aluminum phosphates in soils. Soil Sci Soc Am Proc 19:171–174

    Article  CAS  Google Scholar 

  • Clark RB (1978) Differential response of maize inbreds to zinc. Agron J 70:1057–1060

    Article  CAS  Google Scholar 

  • da Silva JJR, Williams RJP (1976) The uptake of elements by biological systems. Struct Bonding 29:67–121

    Article  Google Scholar 

  • Elkhatib EA, Bennett OL, Baligar VC, Wright RJ (1986) A centrifuge method for obtaining soil solution using an immiscible liquid. Soil Sci Soc Am J 50:297–299

    Article  CAS  Google Scholar 

  • Elkins DM, Ensminger LE (1971) Effect of soil pH on the availability of adsorbed sulfate. Soil Sci Soc Am Proc 35:931–934

    Article  CAS  Google Scholar 

  • Ellis BG, Knezek BD (1972) Adsorption reactions of micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Sci Soc Am, Madison, Wisconsin

    Google Scholar 

  • Fey MV, Noble AD, Sumner ME (1986) Gypsum-induced K fixation in acid, highly weathered soils. Agron Abstr 78:167

    Google Scholar 

  • Fox RL (1980) Soils with variable charge: agronomic and fertility aspects. In: Theng BK (ed) Soils with variable charge. N Z Soc Soil Sei, Lower Hutt, New Zealand

    Google Scholar 

  • Fox RL, de Datta S, Wang JM (1964) Phosphorus and aluminium uptake by plants in Latosols in relation to liming. Trans 8th Int Congr Soil Sci Bucharest 4:595–603

    Google Scholar 

  • Fox RL, Silva JA, Younge OR, Pluncknett DL, Sherman GD (1967) Soil and plant silicon and silicate response by sugarcane. Soil Sci Soc Am Proc 31:775–779

    Article  CAS  Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminum and manganese toxicities on acid soils. In: Adams F (ed) Soil Acidity and liming, 2nd edn. Agronomy 12, Am Soc Agron, Madison, Wisconsin

    Google Scholar 

  • Franco AA, Munns DN (1981) Response of Phaseolus vulgaris L. to molybdenum under acid conditions. Soil Sci Soc Am J 45:1144–1148

    Article  CAS  Google Scholar 

  • Friesen DK, Juo ASR, Miller MH (1980a) Liming and lime-phosphorus-zinc interactions in two Nigerian Ultisols: I. Interactions in the soil. Soil Sci Soc Am J 44:1221–1226

    Article  CAS  Google Scholar 

  • Friesen DK, Miller MH, Juo ASR (1980b) Liming and lime-phosphorus-zinc interactions in two Nigerian Ultisols: IL Effect on maize root and shoot growth. Soil Sci Soc Am J 44:1227–1232

    Article  CAS  Google Scholar 

  • Gardner WK, Parberry DG, Barber SA (1982) The acquisition of phosphorus by Lupinus albash. I. Some characteristics of the soil/root interface. Plant Soil 68:19–32

    Article  CAS  Google Scholar 

  • Grimme H (1968) Die Adsorption von Mn, Ca, Cu und Zn durch Goethit aus verdünnten Lösungen. Z Pflanzenernähr Bodenkd 121:58–65

    Article  CAS  Google Scholar 

  • Grinsted MJ, Hedley MJ, White RE, Nye PH (1982) Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. I. pH change and increase in P concentration in the soil solution. New Phytol 91:19–29

    Article  CAS  Google Scholar 

  • Haynes RJ (1984) Lime and phosphate in the soil-plant system. Adv Agron, Academic Press, Lond NY 37:249–315

    CAS  Google Scholar 

  • Haynes RJ, Ludecke TE (1981) Effect of lime and phosphorus applications on concentrations of available nutrients and on P, Al and Mn uptake by two pasture legumes. Plant Soil 62:117–128

    Article  CAS  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    Article  CAS  Google Scholar 

  • Hsu PH (1977) Aluminum hydroxides and oxyhydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am J, Madison, Wisconsin

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley Intersci, NY

    Google Scholar 

  • Jones JP, Fox RL (1978) Phosphorus nutrition of plants influenced by manganese and aluminum uptake from an Oxisol. Soil Sci 126:230–236

    Article  CAS  Google Scholar 

  • Juo ASR, Uzu FO (1977) Liming and nutrient interactions in two Ultisols from southern Nigeria. Plant Soil 47:419–430

    Article  CAS  Google Scholar 

  • Kamprath EJ (1984) Crop response to lime on soils in the tropics. In: Adams F (ed) Soil acidity and liming. Am Soc Agron, Madison, Wisconsin

    Google Scholar 

  • Karimian N, Cox FR (1978) Adsorption and extractability of molybdenum in relation to some chemical properties of soil. Soil Sci Soc Am J 42:757–761

    Article  CAS  Google Scholar 

  • Kim MK, Edwards DG, Asher CJ (1985) Tolerance of Trifolium subterraneum cultivars to low pH. Aust J Agric Res 36:569–578

    Article  Google Scholar 

  • Krauskopf KB (1972) Geochemistry of micronutrients. In: Mordvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Sci Soc Am, Madison, Wisconsin, pp 7–40

    Google Scholar 

  • Larsen S, Court MN (1960) The chemical potentials of phosphate ions in soil solutions. Trans 7th Int Congr Soil Sci, Wisconsin 2:413–421

    Google Scholar 

  • Lindsay WL (1972) Inorganic phase equilibria of micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Sci Soc Am, Madison, Wisconsin

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, NY

    Google Scholar 

  • May HM, Helmke ML, Jackson ML (1979) Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solutions at 25 °C. Geochim Cosmochim Acta 43:861–868

    Article  CAS  Google Scholar 

  • McNaught KF, Dorofaeff FD, Karlovsky J (1973) Effect of some magnesium fertilisers on mineral composition of pasture on Horotiv sandy loam. N Z J Exp Agric 1:349–363

    CAS  Google Scholar 

  • Miller MH, Mamaril CP, Blair GJ (1970) Ammonium effects on phosphorus absorption through pH changes and phosphorus precipitation at the soil-root interface. Agron J 62:524–527

    Article  CAS  Google Scholar 

  • Morris HD (1949) The soluble manganese content of acid soils and its relation to the growth and manganese content of sweet clover and lespedeza. Soil Sci Soc Am Proc 13:362–371

    Article  CAS  Google Scholar 

  • Munns DN (1978) Legume-rhizobium relations. In: Andrew CS, Kamprath EJ (eds) Mineral nutrition of legumes in tropical and subtropical soils. CSIRO, East Melbourne, Australia

    Google Scholar 

  • Munns DN, Fox RL (1976) The slow reaction which continues after phosphate adsorption: kinetics and equilibrium in some tropical soils. Soil Sci Soc Am J 40:46–51

    Article  CAS  Google Scholar 

  • Murrmann RP, Peech M (1969) Effect of pH on labile and soluble phosphate in soils. Soil Sci Soc Am Proc 33:205–210

    Article  CAS  Google Scholar 

  • Noble AD, Sumner ME (1988) Calcium and Al interactions and soybean growth in nutrient solutions. Comm Soil Sci Plant Anal 19:1119–1131

    Article  CAS  Google Scholar 

  • Noble AD, Fey MV, Sumner ME (1988) Calcium aluminum balance and the growth of soybean roots in nutrient solutions. Soil Sci Soc Am J 52:1651–1656

    Article  CAS  Google Scholar 

  • Nordstrom DK (1982) The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298K. Geochim Cosmochim Acta 46:681–692

    Article  CAS  Google Scholar 

  • Nordstrom DK, Ball JW (1986) The geochemical behavior of aluminum in acidified surface waters. Science 232:54–56

    Article  PubMed  CAS  Google Scholar 

  • Nye PH (1986) Acid-base changes in the rhizosphere. Adv Plant Nutr Praeger, New York, 2:129–153

    CAS  Google Scholar 

  • Obihara CH, Russell EW (1972) Specific adsorption of silicate and phosphate by soils. J Soil Sci 23:105–117

    Article  CAS  Google Scholar 

  • Oertli JJ (1973) The use of chemical potentials to express nutrient availabilities. Geoderma 9:81–95

    Article  CAS  Google Scholar 

  • Paulsen GM, Rotimi OM (1968) Phosphorus-zinc interaction in two soybean varieties different in sensitivity to phosphorus nutrition. Soil Sci Soc Am Proc 32:73–76

    Article  CAS  Google Scholar 

  • Pavan MA, Bingham FT, Pratt PF (1982) Toxicity of aluminum to coffee in Ultisols and Oxisols amended with CaCO3, MgCO3 and CaSO4 • 2H2O. Soil Sci Soc Am J 46:1201–1207

    Article  CAS  Google Scholar 

  • Payne GG, Sumner ME, Plank CO (1986) Yield and composition of soybeans as influenced by soil pH, phosphorus, zinc and copper. Comm Soil Sci Plant Anal 17:257–273

    Article  CAS  Google Scholar 

  • Pettinger NA (1935) Useful chart for teaching the relation of soil reaction to the availability of plant nutrients to crops. VA Agric Exp Stn Tech Bull 136:1–10

    Google Scholar 

  • Rhoades JD, Ingvalson RD, Hatcher JT (1970) Adsorption of boron by ferromagnesian minerals and magnesium hydroxide. Soil Sci Soc Am Proc 34:934–941

    Google Scholar 

  • Robarge WP, Corey RB (1979) Adsorption of phosphate by hydroxy-aluminium species on a cation exchange resin. Soil Sci Soc Am J 43:481–487

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H, Kramer D (1982) Responses to Fe deficiency in roots of “Fe-efficient” plant species. J Plant Nutr 5:489–498

    Article  Google Scholar 

  • Salmon RC (1964) Cation activity ratios in equilibrium soil solutions and the availability of magnesium. Soil Sci 98:213–221

    Article  CAS  Google Scholar 

  • Sarkar AN, Wyn Jones RG (1982) Influence of rhizosphere on the nutrient status of dwarf French beans. Plant Soil 65:362–380

    Google Scholar 

  • Schofield RK (1955) Can a precise meaning be given to “available” soil phosphorus? Soils Fert 18:373–375

    Google Scholar 

  • Skeen JB, Sumner ME (1965) Measurement of exchangeable aluminum in acid soils. Nature (Lond) 208:712–713

    Article  CAS  Google Scholar 

  • Smyth TJ, Sanchez PA (1980) Effects of lime, silicate and phosphorus applications to an Oxisol on phosphorus sorption and ion retention. Soil Sci Soc Am J 44:500–505

    Article  CAS  Google Scholar 

  • Soon YK (1985) Introduction. In: Soon YE (ed) Soil nutrient availability. Van Nostrand Reinhold, NY, pp 1–12

    Google Scholar 

  • Soon YK, Miller MH (1977) Changes in the rhizosphere due to (math) and (math) fertilization and phosphorus uptake by corn seedlings (Zea mays L.). Soil Sci Soc Am J 41:77–80

    Article  CAS  Google Scholar 

  • Soltanpour PN, Adams F, Bennett AC (1974) Soil phosphorus availability as measured by displaced soil solutions, calcium chloride extracts, dilute acid extracts and labile phosphorus. Soil Sci Soc Am P 38:225–228

    Google Scholar 

  • Spencer WF (1966) Effect of copper on yield and uptake of phosphorus and iron by citrus seedlings grown at various phosphorus levels. Soil Sci 102:296–299

    Article  CAS  Google Scholar 

  • Sposito G (1984) The future of an illusion: ion activities in soil solutions. Soil Sci Soc Am J 48:531–536

    Article  CAS  Google Scholar 

  • Sposito G (1986) Thermodynamics of the soil solution. In: Sparks DL (ed) Soil physical chemistry. CRC Press, Boca Raton, Florida, pp 147–178

    Google Scholar 

  • Stanton DA, Burger R du T (1967) Availability to plants of zinc sorbed by soil and hydrous iron oxides. Geoderma 1:13–17

    Article  CAS  Google Scholar 

  • Sumner ME, Farina MPW (1986) Phosphorus interactions with other nutrients and lime in field cropping systems. Adv Soil Sei, Springer, Berlin Heidelberg New York Tokyo 5:201–236

    Google Scholar 

  • Sumner ME, Farina MPW, Hurst VJ (1978) Magnesium fixation — a possible cause of negative yield responses to lime applications. Comm Soil Sci Plant Anal 9:995–1007

    Article  CAS  Google Scholar 

  • Sumner ME, Boerma HR, Isaac R (1982) Differential genotypic sensitivity of soybeans to P-Zn-Cu imbalances. Proc 9th Int Plant Nutr Coll, Comm Agr Bur, Slough, UK, 2:652–657

    CAS  Google Scholar 

  • Sumner ME, Shahandeh H, Bouton J, Hammel J (1986) Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Sci Soc Am J 50:1254–1258

    Article  CAS  Google Scholar 

  • Tinker PB (1964) Studies on soil potassium. IV. Equilibrium cation activity ratios and responses to potassium fertilizer of Nigerian oil palms. J Soil Sci 15:35–41

    Article  CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. MacMillan, NY, pp 397–399

    Google Scholar 

  • Traina SJ, Sposito G, Hesterberg D, Kafkafi U (1986) Effects of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Sci Soc Am J 50:45–52

    Article  CAS  Google Scholar 

  • Vlek PLG, Lindsay WL (1977) Thermodynamic stability and solubility of molybdenum minerals in soils. Soil Sci Soc Am J 41:42–46

    Article  CAS  Google Scholar 

  • Volkweiss S J (1973) Factors affecting phosphate sorption by soils and minerals. PhD Thesis, Univ Wisconsin, Madison, Univ Microfilms, Ann Arbor, MI (Diss Abstr Int 34/10:4783-B)

    Google Scholar 

  • Wear JI, Patterson RM (1962) Effect of soil pH and texture on the availability of water soluble boron in the soil. Soil Sci Soc Am Proc 26:344–347

    Article  CAS  Google Scholar 

  • White RE, Taylor WW (1977) Effect of pH on phosphate adsorption and isotopic exchange in acid soils at low and high additions of soluble phosphate. J Soil Sci 28:48–61

    Article  CAS  Google Scholar 

  • Wolt J, Graved JG (1986) A rapid routine method for obtaining soil solution using vacuum displacement. Soil Sci Soc Am J 50:602–605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sumner, M.E., Fey, M.V., Noble, A.D. (1991). Nutrient Status and Toxicity Problems in Acid Soils. In: Ulrich, B., Sumner, M.E. (eds) Soil Acidity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74442-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74442-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74444-0

  • Online ISBN: 978-3-642-74442-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics