Skip to main content

Effects of Light Chilling on Photophosphorylation in Cucumber

  • Conference paper
Photosynthesis
  • 151 Accesses

Summary

The response of in situ photophosphorylation in attached cucumber (Cucumis sativus L.) leaves to chilling (5°C) under strong illumination (1000 µE·m‒2·1) was investigated. A single-beam kinetic spectrophotometer fitted with a clamp-on, whole leaf cuvette was used to measure the flash-induced electrochromic absorbance change at 518–540 nm (ΔΔ518–540) in attached leaves. The relaxation kinetics of the electric field-indicating ΔΔ518–540 measure the rate of depolarization of the thylakoid membrane. Since this depolarization process is normally dominated by proton efflux through the coupling factor during ATP synthesis, this technique can be used, in conjunction with careful controls, as a monitor of in situ ATP formation competence.

Whole, attached leaves were chilled at 5°C and 1000 µEm‒2·s‒1 for up to 6 h, then rewarmed in the dark and 100% R.H. at room temperature for 30 min. Leaf water potential, chlorophyll content, and the effective optical path length for the absorption measurements were not affected by the treatment. Light-and CO2-saturated leaf disc oxygen evolution and the quantum efficiency of photosynthesis were inhibited by approx. 50% after 3 h of chilling and by approx. 75% after 6 h. Despite the large inhibition to net photosynthesis, the measurements of ΔΔ518–540 relaxation kinetics showed photophosphorylation to be largely unaffected by the chilling and light exposure. Our measurements showed that the chilling of whole leaves in the light caused neither an uncoupling of photophosphorylation from photosynthetic electron transport nor any irreversible inhibition of the chloroplast coupling factor in situ. The sizeable inhibition observed after light chilling in net photosynthesis cannot, therefore, be attributed to a reduced capacity for photophosphorylation. The amplitude of the ΔΔ518–540, however, was reduced by about half after 3 h of treatment. The cause of this decreased amplitude and its significance to the overall inhibition is under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DCCD:

dicyclohexylcarbodiimide

PAR:

photosynthetically active radiation

ΔP:

transmembrance protonmotive force

References

  1. Taylor, A. O. and Rowley, A. (1971) Plant Physiol. 47, 713–718

    Article  PubMed  CAS  Google Scholar 

  2. Van Hasselt, Ph.R. and Van Berlo, H. A. C. (1980) Physiol. Plant. 50, 52–56

    Article  Google Scholar 

  3. Long, S. P., East, T. M. and Baker, N. R. (1983) J. Expt. Bot. 34, 177–188

    Article  Google Scholar 

  4. Martin, B. and Ort, D. R. (1985) Photosyn. Res. 6, 121–132

    Article  Google Scholar 

  5. Drake, B. and Raschke, K. (1974) Plant Physiol. 53, 808–812

    Article  PubMed  CAS  Google Scholar 

  6. Baker, N. R., East, T. M. and Long, S. P. (1983) J. Expt. Bot. 34, 189–197

    Article  CAS  Google Scholar 

  7. Powles, S. B., Berry, J. A. and Bjorkman, O. (1983) Plant Cell Environ. 6, 117–123

    Article  Google Scholar 

  8. Kee, S. C., Martin, B. and Ort, D. R. (1986) Photosyn. Res. 8, 41–51

    Article  CAS  Google Scholar 

  9. Peeler, T. C. and Naylor, A. W. (1988) Plant Physiol. 86, 147–151

    Article  PubMed  CAS  Google Scholar 

  10. Keck, R. W. and Boyer, J. S. (1974) Plant Physiol. 67, 985–989

    Google Scholar 

  11. 11. Younis, H. M., Boyer, J. S. and Govindjee (1979) Biochim. Biophys. Acta 548, 328–340

    Article  CAS  Google Scholar 

  12. Kaiser, W. M., Kaiser, G., Prachaub, P. K., Weldamn, S. G. and Heber, U. (1981) Planta 153, 416–422

    Article  CAS  Google Scholar 

  13. Ortiz-Lopez, A., Ort, D. R. and Boyer, J. S. (1987) ha In: Progress in Photosynthesis Research. Proceedings of the 7th International Congress on Photosynthesis, Vol. 4 (J Biggins, ed.), pp. 153–156, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht

    Google Scholar 

  14. Kislyuk, I. M. and Vas’kovskii, M. D. (1972) Sov. Plant Physiol. 19, 688–692

    Google Scholar 

  15. Garber, M. P. (1977) Plant Physiol. 59, 981–985

    Article  PubMed  CAS  Google Scholar 

  16. Santarius, K. A. (1984) Plant Physiol. 61, 591–598

    Article  CAS  Google Scholar 

  17. Witt, H. T. (1979) Biochim. Biophys. Acta 505, 355–427

    CAS  Google Scholar 

  18. Monta, S., Itoh, S. and Nishimura, M. (1982) Biochim. Biophys. Acta 679, 125–130

    Article  Google Scholar 

  19. McWilliam, J. R. and Musser, R. L. (1982) Aust. J. Plant Physio 9, 343–352

    Article  Google Scholar 

  20. Delieu, T. and Walker, D. A. (1981) New Phytol. 89, 165–178

    Article  CAS  Google Scholar 

  21. Boyer, J. S. and Knipling, E. B. (1965) Proc. Natl. Acad. Sci. USA 54, 1044–1051

    Article  Google Scholar 

  22. Ziegler, R. and Egle, K. (1965) Beitr. Biol. Pflanzen. 41, 11–37

    CAS  Google Scholar 

  23. Graan, T. and Ort, D. R. (1984) J. Biol. Chem. 259, 14003–14010

    PubMed  CAS  Google Scholar 

  24. Graan, T. and Ort, D. R. (1986) Biochim. Biophys. Acta 852, 320–330

    Article  CAS  Google Scholar 

  25. Petty, K. M. and Jackson, J. B. (1979) Biochim. Biophys. Acta 547, 463–473

    Article  CAS  Google Scholar 

  26. Rühle, W. and Wild, A. (1979) Planta 146, 551–557

    Article  Google Scholar 

  27. Sassenrath, G. F., Ort, D. R. and Portis, A. R., Jr. (1987) ha In: Progress in Photosynthesis Research, Proceedings of the 7th International Congress on Photosynthesis, vol 4 (Biggins, J. ed), pp. 103–108, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht

    Google Scholar 

  28. Mills, J. D., Mitchell, P., and Schurmann, P. (1980) FEBS Lett. 112, 173–177

    Article  CAS  Google Scholar 

  29. Shahak, Y. (1982) Plant Physiol. 70, 87–91

    Article  PubMed  CAS  Google Scholar 

  30. Hangarter, R. P., Grandoni, P. and Ort, D. R. (1987) J. Biol. Chem. 262, 13513–13519

    PubMed  CAS  Google Scholar 

  31. Wise, R. R. and A. W. Naylor (1987) Plant Physiol. 83, 278–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. S. Singhal James Barber Richard A. Dilley Govindjee Robert Haselkorn Prasanna Mohanty

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Narosa Publishing House

About this paper

Cite this paper

Wise, R.R., Ort, D.R. (1989). Effects of Light Chilling on Photophosphorylation in Cucumber. In: Singhal, G.S., Barber, J., Dilley, R.A., Govindjee, Haselkorn, R., Mohanty, P. (eds) Photosynthesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74221-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74221-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74223-1

  • Online ISBN: 978-3-642-74221-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics