Skip to main content

Animal Receptors — Examples of Cellular Signal Perception Molecules

  • Conference paper
Signal Molecules in Plants and Plant-Microbe Interactions

Part of the book series: NATO ASI Series ((ASIH,volume 36))

Abstract

Considerable information has accumulated about the mechanisms by which animal cells perceive extracellular signals. In sharp contrast, very little is known about cellular signal perception in plant cells. The purpose of this article is to examine signal perception mechanisms in animal cells and to highlight general principles that may prove applicable to the study of plant systems. I will focus on the receptors in target cells that specifically bind the signal molecule(s). This is the initial event in the signal cascade that eventually leads to changes in cellular metabolism (e.g., gene expression) in targeted cells. Secondary messengers, which are often involved in the signal transduction process subsequent to the binding of signal molecules to receptors, are the focus of another review (see article by C. A. West, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim P, Darvill AG (1985) Oligosaccharins. Sci Am 253:58–64

    Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular Biology of the Cell. Garland Publishing, Inc., New York, NY

    Google Scholar 

  • Alemany S, Mato JM, Strälfors P (1988) Phospho-dephospho-control by insulin is mimicked by a phospho-oligosaccharide in adipocytes. Nature 330:77–79

    Google Scholar 

  • Ankenbauer W, Strähle U, Schütz G (1988) Synergistic action of glucocorticoid and estradiol responsive elements. Proc Natl Acad Sci USA 85:7526–7530

    CAS  PubMed  Google Scholar 

  • Araki E, Shimada F, Uzawa H, Mori M, Ebina Y (1987) Characterization of the promoter region of the human insulin receptor gene. Evidence for promoter activity. J Biol Chem 262:16186–16191

    CAS  PubMed  Google Scholar 

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    CAS  PubMed  Google Scholar 

  • Ashkenazi A, Peralta EG, Winslow JW, Ramachandran J, Capon DJ (1989) Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 56:487–493

    CAS  PubMed  Google Scholar 

  • Backer JM, Kahn CR, White MF (1989) Tyrosine phosphorylation of the insulin receptor during insulin-stimulated internalization in rat hepatoma cells. J Biol Chem 264:1694–1701

    CAS  PubMed  Google Scholar 

  • Beato M (1989) Gene regulation by steroid hormones. Cell 56:335–344

    CAS  PubMed  Google Scholar 

  • Bernier M, Laird DM, Lane MD (1987) Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes. Proc Natl Acad Sci USA 84:1844–1848

    CAS  PubMed  Google Scholar 

  • Bernier M, Laird DM, Lane MD (1988) Effect of vanadate on the cellular accumulation of ppl5, an apparent product of insulin receptor tyrosine kinase action. J Biol Chem 263:13626–13634

    CAS  PubMed  Google Scholar 

  • Birdsall NJM, Hulme EC (1983) Muscarinic receptor subclasses. Trends Pharmacol Sci 4:459–463

    CAS  Google Scholar 

  • Blum W, Hinsch K-D, Schultz G, Weiler EW (1988) Identification of GTP-binding proteins in the plasma membrane of higher plants. Biochem Biophys Res Commun 156:954–959

    CAS  PubMed  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    CAS  PubMed  Google Scholar 

  • Boss WF, Morré DJ (eds) (1989) Second Messengers in Plant Growth and Development. Alan R. Liss, Inc., New York, NY

    Google Scholar 

  • Bottaro DP, Bonner-Weir S, King GL (1989) Insulin receptor recycling in vascular endothelial cells. Regulation by insulin and phorbol ester. J Biol Chem 264:5916–5923

    CAS  PubMed  Google Scholar 

  • Boulter J, Connolly J, Deneris E, Goldman D, Heinemann S, Patrick J (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from NA clones identifies a gene family. Proc Natl Acad Sci USA 84:7763–7767

    CAS  PubMed  Google Scholar 

  • Bouvier M, Hnatowich M, Collins S, Kobilka BK, Deblasi A, Lefkowitz RJ, Caron MG (1988) Expression of a human cDNA encoding the β2-adrenergic receptor in Chinese hamster fibroblasts (CHW): Functionality and regulation of the expressed receptors. Molec Pharmacol 33:133–139

    CAS  Google Scholar 

  • Bresnick EH, Dalman FC, Sanchez ER, Pratt WB (1989) Evidence that the 90-a heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem 264:4992–4997

    CAS  PubMed  Google Scholar 

  • Brinegar AC, Cooper G, Stevens A, Hauer CR, Shabanowitz J, Hunt DF, Fox JE (1988) Characterization of a benzyladenine binding-site peptide isolated from a wheat cytokinin-binding protein: Sequence analysis and identification of a single affinity-labeled histidine residue by mass spectrometry. Proc Natl Acad Sci USA 85:5927–5931

    CAS  PubMed  Google Scholar 

  • Brisson A, Unwin PNT (1985) Quaternary structure of the acetylcholine receptor. Nature 315:474–477

    CAS  PubMed  Google Scholar 

  • Burnstein KL, Cidlowski JA (1989) Regulation of gene expression by glucocorticoids. Ann Rev Physiol 51:683–699

    CAS  Google Scholar 

  • Carpenter G (1987) Receptors for epidermal growth factor and other polypeptide mitogens. Ann Rev Biochem 56:881–914

    CAS  PubMed  Google Scholar 

  • Chandler VL, Maler BA, Yamamoto KR (1983) DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33:489–499

    CAS  PubMed  Google Scholar 

  • Chang C, Kokontis J, Liao S (1988) Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240:324–326

    CAS  PubMed  Google Scholar 

  • Chou CK, Dull TJ, Russell DS, Gherzi R, Lebwohl D, Ullrich A, Rosen OM (1987) Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262:1842–1847

    CAS  PubMed  Google Scholar 

  • Cleveland WL, Wassermann NH, Sarangarajan R, Penn AS, Erlanger BF (1983) Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto-anti-idiotypic mechanism. Nature 305:56–57

    CAS  PubMed  Google Scholar 

  • Cohen S, Sokolovsky M (1987) Complexity apparent in muscarinic mechanisms. Trends Pharmacol Sci 8:41–44

    Google Scholar 

  • Conti-Tronconi BM, Raftery MA (1982) The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Ann Rev Biochem 51:491–530

    CAS  PubMed  Google Scholar 

  • Cooper G, Bourell J, Kaminek M, Fox JE (1988) Method for synthesis of 2-azido-N(6)-m-tritiobenzyl- aminopurine, a photoaffinity label for cytokinin-binding proteins in plants. J Label Comp Radiopharm 25:957–962

    CAS  Google Scholar 

  • Cotecchia S, Schwinn DA, Randall RR, Lefkowitz R, Caron MG, Kobilka BK (1988) Molecular cloning and expression of the NA for the hamster a’-adrenergic receptor. Proc Natl Acad Sci USA 85:7159–7163

    CAS  PubMed  Google Scholar 

  • Cuatrecasas P (1971) Insulin-receptor interactions in adipose cells: direct measurement and properties. Proc Natl Acad Sci USA 68:1264–1268

    CAS  PubMed  Google Scholar 

  • Czech MP (1977) Molecular basis of insulin action. Ann Rev Biochem 46:359–384

    CAS  PubMed  Google Scholar 

  • Czech MP (1985) The nature and regulation of the insulin receptor: Structure and function. Ann Rev Physiol 47:357–381

    CAS  Google Scholar 

  • Czech MP, Klarlund JK, Yagaloff KA, Bradford AP, Lewis RE (1988) Insulin receptor signaling. Activation of multiple serine kinases. J Biol Chem 263:11017–11020

    CAS  PubMed  Google Scholar 

  • Dahlman K, Stromstedt P-E, Rae C, Jornvall H, Flock J-I, Carlstedt-Duke J, Gustafsson J-A (1989) High level expression in Escherichia coli of the DNA-binding domain of the glucocorticoid receptor in a functional form utilizing domain-specific cleavage of a fusion protein. J Biol Chem 264:804–809

    CAS  PubMed  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors — A defense against microbial infection in plants. Ann Rev Plant Physiol 35:243–275

    CAS  Google Scholar 

  • Denis M, Gustafsson J-Å, Wikström A-C (1988) Interaction of the Mr=90,000 heat shock protein with the steroid-binding domain of the glucocorticoid receptor. J Biol Chem 263:18520–18523

    CAS  PubMed  Google Scholar 

  • Dixon RA (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61:239–291

    CAS  Google Scholar 

  • Dixon RAF, Sigal IS, Candelore MR, Register RB, Scattergood W, Rands E, Strader CD (1987) Structural features required for ligand binding to the β-adrenergic receptor. EMBO J 6:3269–3275

    CAS  PubMed  Google Scholar 

  • Dobson ADW, Conneely OM, Beattie W, Maxwell BL, Mak P, Tsai M-J, Schrader WT, O’Malley BW (1989) Mutational analysis of the chicken progesterone receptor. J Biol Chem 264:4207–4211

    CAS  PubMed  Google Scholar 

  • Dohlman HG, Bouvier M, Benovic JL, Caron MG, Lefkowitz RJ (1987) The multiple membrane spanning topography of the β 2 -adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J Biol Chem 262:14282–14288

    CAS  PubMed  Google Scholar 

  • Dohlman HG, Caron MG, Strader CD, Amlaiky N, Lefkowitz RJ (1988) Identification and sequence of a binding site peptide of the β 2 -adrenergic receptor. Biochem 27:1813–1817

    CAS  Google Scholar 

  • Ebel J (1986) Phytoalexin synthesis: The biochemical analysis of the induction process. Ann Rev Phytopathol 24:235–264

    CAS  Google Scholar 

  • Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J-H, Masiarz F, Kan YW, Goldfine ED, Roth RA, Rutter WJ (1985a) The human insulin receptor NA: The structural basis for hormone- activated transmembrane signalling. Cell 40:747–758

    CAS  PubMed  Google Scholar 

  • Ebina Y, Edery M, Ellis L, Standring D, Beaudoin J, Roth RA, Rutter WJ (1985b) Expression of a functional human insulin receptor from a cloned NA in Chinese hamster ovary cells. Proc Natl Acad Sci USA 82:8014–8018

    CAS  PubMed  Google Scholar 

  • Ebina Y, Araki E, Taira M, Shimada F, Mori M, Craik CS, Siddle K, Pierce SB, Roth RA, Rutter WJ (1987) Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity. Proc Natl Acad Sci USA 84:704–708

    CAS  PubMed  Google Scholar 

  • Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ (1986) Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2- deoxyglucose. Cell 45:721–732

    CAS  PubMed  Google Scholar 

  • Ellis L, Morgan DO, Jong S-M, Wang L-H, Roth RA, Rutter WJ (1987a) Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells. Proc Natl Acad Sci USA 84:5101–5105

    CAS  PubMed  Google Scholar 

  • Ellis L, Morgan DO, Clauser E, Roth RA, Rutter WJ (1987b) A membrane-anchored cytoplasmic domain of the human insulin receptor mediates a constitutively elevated insulin-independent uptake of 2- deoxyglucose. Mol Endocrinol 1:15–24

    CAS  PubMed  Google Scholar 

  • Eriksson H, Gustafsson J-Å (eds) (1983) Steroid Hormone Receptors: Structure and Function. Elsevier Science Publishers B.V., Amsterdam, The Netherlands

    Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    CAS  PubMed  Google Scholar 

  • Evans RM, Hollenberg SM (1988) Zinc fingers: Gilt by association. Cell 52:1–3

    CAS  PubMed  Google Scholar 

  • Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ (1988) The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358–360 Florio VA, Sternweis PC (1989) Mechanisms of muscarinic receptor action on Go in reconstituted phospholipid vesicles. J Biol Chem 264:3909–3915

    Google Scholar 

  • Fraser CM, Chung F-Z, Wang C-D, Venter JC (1988) Site-directed mutagenesis of human β-adrenergic receptors: Substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Proc Natl Acad Sci USA 85:5478–5482

    CAS  PubMed  Google Scholar 

  • Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the NA for the human β 1 -adrenergic receptor. Proc Natl Acad Sci USA 84:7920–7924

    CAS  PubMed  Google Scholar 

  • Fukuda K, Kubo T, Akiba I, Maeda A, Mishina M, Numa S (1987) Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature 327:623–625

    CAS  PubMed  Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629

    CAS  PubMed  Google Scholar 

  • Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM (1986) Functional domains of the human glucocorticoid receptor. Cell 46:645–652

    CAS  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: Transducers of receptor-generated signals. Ann Rev Biochem 56:615–649

    CAS  PubMed  Google Scholar 

  • Green S, Walter P, Kumar V, Krust A, Bornert J-M, Argos P, Chambon P (1986) Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb-A. Nature 320:134–139

    CAS  Google Scholar 

  • Green S, Chambon P (1987) Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325:75–78

    CAS  PubMed  Google Scholar 

  • Green S, Kumar V, Theulaz I, Wahli W, Chambon P (1988) The N-terminal DNA-binding ‘zinc finger’ of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 7:3037–3044

    CAS  PubMed  Google Scholar 

  • Gronemeyer H, Turcotte B, Quirin-Stricker C, Bocquel MT, Meyer ME, Krozowski Z, Jeltsch JM, Lerouge T, Garnier JM, Chambon P (1987) The chicken progesterone receptor: Sequence, expression and functional analysis. EMBO J 6:3985–3994

    CAS  PubMed  Google Scholar 

  • Guern J (1987) Regulation from within: The hormone dilemma. Ann Bot 60:75–102

    CAS  Google Scholar 

  • Gustafsson J-Å, Carlstedt-Duke J, Poellinger L, Okret S, Wikström A-C, Brönnegård M, Gillner M, Dong Y, Fuxe K, Cintra A, Härfstrand A, Agnati L (1987) Biochemistry, molecular biology, and physiology of the glucocorticoid receptor. Endoc Rev 8:185–234

    CAS  Google Scholar 

  • Haga K, Haga T (1985) Purification of the muscarinic acetylcholine receptor from porcine brain. J Biol Chem 260:7927–7935

    CAS  PubMed  Google Scholar 

  • Haga K, Haga T, Ichiyama A, Katada T, Kurose H, Ui M (1985) Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature 316:731–733

    CAS  PubMed  Google Scholar 

  • Haga K, Haga T, Ichiyama A (1986) Reconstitution of the muscarinic acetylcholine receptor. Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (GI. and GQ). J Biol Chem 261:10133–10140

    CAS  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Ann Rev Plant Physiol Plant Mol Biol 40:347–369

    CAS  Google Scholar 

  • Hammer R, Berrie CP, Birdsall NJM, Burgen ASV, Hulme EC (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283:90–92

    CAS  PubMed  Google Scholar 

  • Hanks SK (1987) Homology probing: Identification of NA clones encoding members of the protein-serine kinase family. Proc Natl Acad Sci USA 84:388–392

    CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    CAS  PubMed  Google Scholar 

  • Hazel TG, Nathans D, Lau LF (1988) A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 85:8444–8448

    CAS  PubMed  Google Scholar 

  • Heldin C-H, Ronnstrand L (1989) The platelet-derived growth factor receptor. In: Moudgil VK (ed) Receptor Phosphorylation. CRC Press, Inc., Boca Raton, FL, p 149–162

    Google Scholar 

  • Herskowitz I, Marsh L (1987) Conservation of a receptor/signal transduction system. Cell 50:995–996

    CAS  PubMed  Google Scholar 

  • Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor NA. Nature 318:635–641

    CAS  PubMed  Google Scholar 

  • Hornberg C, Weiler EW (1984) High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310:321–324

    CAS  Google Scholar 

  • Hresko RC, Bernier M, Hoffman RD, Flores-Riveros JR, Liao K, Laird DM, Lane MD (1988) Identification of phosphorylated 422(aP2) protein as ppl5, the 15-kilodalton target of the insulin receptor tyrosine kinase in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 85:8835–8839

    CAS  PubMed  Google Scholar 

  • Hunter T (1987) A thousand and one protein kinases. Cell 50:823–829

    CAS  PubMed  Google Scholar 

  • Jackson TR, Blair LAC, Marshall J, Goedert M, Hanley MR (1988) The mas oncogene encodes an angiotensin receptor. Nature 335:437–440

    CAS  PubMed  Google Scholar 

  • Jantzen H-M, Strahle U, Gloss B, Stewart F, Schmid W, Boshart M, Miksicek R, Schiitz G (1987) Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49:29–38

    CAS  PubMed  Google Scholar 

  • Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, Dombre ER (1968) A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA 59:632–638

    CAS  PubMed  Google Scholar 

  • Julius D, Maermott AB, Axel R, Jessell TM (1988) Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 241:558–564

    CAS  PubMed  Google Scholar 

  • Järv J, Bartfai T (1988) Muscarinic acetycholine receptors. In: Whittaker VP (ed) Handbook of Experimental Pharmacology, Vol. 86. The Cholinergic Synapse. Springer Verlag, Berlin, Germany, p 315–345

    Google Scholar 

  • Kasuga M, Fujita-Yamaguchi Y, Blithe DL, White MF, Kahn CR (1983) Characterization of the insulin receptor kinase purified from human placental membranes. J Biol Chem 258:10973–10980

    CAS  PubMed  Google Scholar 

  • Kelly KL, Merida I, Wong EHA, Denzo D, Mato JM (1987) A phospho-oligosaccharide mimics the effect of insulin to inhibit isoproterenol-dependent phosphorylation of phospholipid methyltransferase in isolated adipocytes. J Biol Chem 262:15285–15290

    CAS  PubMed  Google Scholar 

  • Khoury G, Gruss P (1983) Enhancer elements. Cell 33:313–314

    CAS  PubMed  Google Scholar 

  • King WJ, Greene GL (1984) Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 307:745–747

    CAS  PubMed  Google Scholar 

  • Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH (1982) Structure and function of an acetylcholine receptor. Biophys J 37:371–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klee H, Horsch R, Rogers S (1987) Agrobacterium -mediated plant transformation and its further applications to plant biology. Ann Rev Plant Physiol 38:467–486

    CAS  Google Scholar 

  • Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987a) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79

    CAS  PubMed  Google Scholar 

  • Kobilka BK, MacGregor C, Daniel K, Kobilka TS, Caron MG, Lefkowitz RJ (1987b) Functional activity and regulation of human β 2 -adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 262:15796–15802

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ (1987c) cDNA for the human β 2 -adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84:46–50

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988) Chimeric α2-, β 2 adrenergic receptors: Delineation of domains involved in effector coupling and ligand binding specificity. Science 240:1310–1316

    CAS  PubMed  Google Scholar 

  • Krust A, Green S, Argos P, Kumar V, Walter P, Bornert J-M, Chambon P (1986) The chicken oestrogen receptor sequence: Homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 5:891–897

    CAS  PubMed  Google Scholar 

  • Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1986a) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323:411–416

    CAS  PubMed  Google Scholar 

  • Kubo T, Maeda A, Sugimoto K, Akiba I, Mikami A, Takahashi H, Haga T, Haga K, Ichiyama A, Kangawa K, Matsuo H, Hirose T, Numa S (1986b) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the NA sequence. FEBS Lett 209:367–372

    CAS  PubMed  Google Scholar 

  • Leonard RJ, Labarca CG, Charnet P, Davidson N, Lester HA (1988) Evidence that the M2 membrane- spanning region lines the ion channel pore of the nicotinic receptor. Science 242:1578–1581

    CAS  PubMed  Google Scholar 

  • Libbenga KR, Maan AC, Van der Linde PCG, Mennes AM (1986) Auxin receptors. In: Chadwick CM, Garrod DR (eds) Hormones, Receptors and Cellular Interactions in Plants. Cambridge University Press, Cambridge, UK, p 1–68

    Google Scholar 

  • Lindberg RA, Thompson DP, Hunter T (1988) Identification of NA clones that code for protein-tyrosine kinases by screening expression libraries with antibodies against phosphotyrosine. Oncogene 3:629–633

    CAS  PubMed  Google Scholar 

  • Lombes M, Edelman IS, Erlanger BF (1989) Internal image properties of a monoclonal auto-anti-idiotypic antibody and its binding to aldosterone receptors. J Biol Chem 264:2528–2536

    CAS  PubMed  Google Scholar 

  • Loosfelt H, Atger M, Misrahi M, Guiochon-Mantel A, Meriel C, Logeat F, Benarous R, Milgrom E (1986) Cloning and sequence analysis of rabbit progesterone-receptor complementary DNA. Proc Natl Acad Sci USA 83:9045–9049

    CAS  PubMed  Google Scholar 

  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327–330

    CAS  PubMed  Google Scholar 

  • Löbler M, Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem 260:9848–9853

    PubMed  Google Scholar 

  • Mader S, Kumar V, De Verneuill H, Chambon P (1989) Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid- responsive element. Nature 338:271–274

    CAS  PubMed  Google Scholar 

  • Maegawa H, Mlain DA, Freidenberg G, Olefsky JM, Napier M, Lipari T, Dull DJ, Lee J, Ullrich A (1988) Properties of a human insulin receptor with a COOH-terminal truncation. II. Truncated receptors have normal kinase activity but are defective in signaling metabolic effects. J Biol Chem 263:8912–8917

    CAS  PubMed  Google Scholar 

  • Maelicke A (1988) Structure and function of the nicotinic acetylcholine receptor. In: Whittaker VP (ed) Handbook of Experimental Pharmacology, Vol. 86. The Cholinergic Synapse. Springer Verlag, Berlin, Germany, p 267–313

    Google Scholar 

  • Margolis RN, Taylor SI, Seminara D, Hubbard AL (1988) Identification of ppl20, an endogenous substrate for the hepatocyte insulin receptor tyrosine kinase, as an integral membrane glycoprotein of the bile canalicular domain. Proc Natl Acad Sci USA 85:7256–7259

    CAS  PubMed  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) NA cloning of bovine substance-K receptor through oocyte expression system. Nature 329:836–839

    CAS  PubMed  Google Scholar 

  • Mato JM, Kelly KL, Abler A, Jarett L (1987) Identification of a novel insulin-sensitive glycophospholipid from H35 Hepatoma cells. J Biol Chem 262:2131–2137

    CAS  PubMed  Google Scholar 

  • Mayer SE (1985) Neurohumoral transmission and the autonomic nervous system. In: Goodman Gilman A, Goodman LS, Gilman A (eds) The Pharmacological Basis of Therapeutics. Macmillan Publishing Co., Inc., New York, NY, p 56–90

    Google Scholar 

  • McClain DA, Maegawa H, Lee J, Dull TJ, Ulrich A, Olefsky JM (1987) A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis. J Biol Chem 262:14663–14671

    CAS  PubMed  Google Scholar 

  • McClain DA, Maegawa H, Levy J, Huecksteadt T, Dull TJ, Lee J, Ullrich A, Olefsky JM (1988) Properties of a human insulin receptor with a COOH-terminal truncation. I. Insulin binding, autophosphylation, endocytosis. J Biol Chem 263:8904–8911

    CAS  PubMed  Google Scholar 

  • McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235:1214–1217

    CAS  PubMed  Google Scholar 

  • Melhado LL, Brodsky JL (1988) Synthesis of 4-azidoindole-3-acetic acid, a photoprobe causing sustained auxin activity. J Org Chem 53:3852–3855

    CAS  Google Scholar 

  • Meyer C, Feyerabend M, Weiler EW (1989) Fusicoccin-binding proteins in Arabidopsis thaliana (L.) Heynh. Plant Physiol 89:692–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miesfeld R, Okret S, Wikstrom A-C, Wrange O, Gustafsson J-A. Yamamoto KR (1984) Characterization of a steroid hormone receptor gene and NA in wild-type and mutant cells. Nature 312:779–781

    CAS  Google Scholar 

  • Mishina M, Kurosaki T, Tobimatsu T, Morimoto Y, Noda M, Yamamoto T, Terao M, Lindstrom J, Takahashi T, Kuno M, Numa S (1984) Expression of functional acetylcholine receptor from cloned NAs. Nature 307:604–608

    CAS  PubMed  Google Scholar 

  • Mishina M, Tobimatsu T, Imoto K, Tanaka M, Fujita Y, Fukuda K, Kurasaki M, Takahashi H, Morimoto Y, Hirose T, Inayama S, Takahashi T, Kuno M, Numa S (1985) Location of functional regions of acetylcholine receptor a-subunit by site-directed mutagenesis. Nature 313:364–369

    CAS  PubMed  Google Scholar 

  • Nathans J (1987) Molecular biology of visual pigments. Ann Rev Neurosci 10:163–194

    CAS  PubMed  Google Scholar 

  • Nathanson NM (1987) Molecular properties of the muscarinic acetylcholine receptor. Ann Rev Neurosci 10:195–236

    CAS  PubMed  Google Scholar 

  • Neher E, Marty A, Fukuda K, Kubo T, Numa S (1988) Intracellular calcium release mediated by two muscarinic receptor subtypes. FEBS Lett 240:88–94

    CAS  PubMed  Google Scholar 

  • O’Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ (1988) Site-directed mutagenesis of the cytoplasmic domains of the human β 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem 263:15985–15992

    PubMed  Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ (1987a) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J 6:3923–3929

    CAS  PubMed  Google Scholar 

  • Peralta EG, Winslow JW, Peterson GL, Smith DH, Ashkenazi A, Ramachandran J, Schimerlik MI, Capon DJ (1987b) Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236:600–605

    CAS  PubMed  Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334:434–437

    CAS  PubMed  Google Scholar 

  • Perrotti N, Accili D, Marcus-Samuels B, Rees-Jones RW, Taylor SI (1987) Insulin stimulates phosphorylation of a 120-a glycoprotein substrate (ppl20) for the receptor-associated protein kinase in intact H-35 hepatoma cells. Proc Natl Acad Sci USA 84:3137–3140

    CAS  PubMed  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450

    CAS  PubMed  Google Scholar 

  • Petruzzelli L, Herrera R, Rosen OM (1984) Insulin receptor is an insulin-dependent tyrosine protein kinase: Copurification of insulin-binding activity and protein kinase activity to homogeneity from human placenta. Proc Natl Acad Sci USA 81:3327–3331

    CAS  PubMed  Google Scholar 

  • Ranjeva R, Boudet AM (1987) Phosphorylation of proteins in plants: Regulatory effects and potential involvement in stimulus/reponse coupling. Ann Rev Plant Physiol 38:73–93

    CAS  Google Scholar 

  • Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA 85:6301–6305

    CAS  PubMed  Google Scholar 

  • Repke H (1987) Muscarinic receptor-detergent complexes with different biochemical properties: Selective solubilization, lectin affinity chromatography and ligand binding studies. Biochim Biophys Acta 929:47–61

    CAS  PubMed  Google Scholar 

  • Riedel H, Dull TJ, Schlessinger J, Ullrich A (1986) A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature 324:68–70

    CAS  PubMed  Google Scholar 

  • Ringold GM (1985) Steroid hormone regulation of gene expression. Ann Rev Pharmacol Toxicol 25:529–566

    CAS  Google Scholar 

  • Rosen OM (1987) After insulin binds. Science 237:1452–1458

    CAS  PubMed  Google Scholar 

  • Ryan CA (1987) Oligosaccharide signaling in plants. Ann Rev Cell Biol 3:295–317

    CAS  PubMed  Google Scholar 

  • Sabbah M, Redeuilh G, Baulieu E-E (1989) Subunit composition of the estrogen receptor. Involvement of the hormone-binding domain in the dimeric state. J Biol Chem 264:2397–2400

    CAS  PubMed  Google Scholar 

  • Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–5797

    CAS  PubMed  Google Scholar 

  • Schoepfer R, Whiting P, Esch F, Blacher R, Shimasaki S, Lindstrom J (1988) NA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron 1:241–248

    CAS  PubMed  Google Scholar 

  • Schreiber AB, Couraud PO, Andre C, Vray B, Strosberg AD (1980) Anti-alprenolol anti-idiotypic antibodies bind to β-adreneric receptors and modulate catecholamine-sensitive adenylate cyclase. Proc Natl Acad Sci USA 77:7385–7389

    CAS  PubMed  Google Scholar 

  • Sege K, Peterson PA (1978) Use of anti-idiotypic antibodies as cell-surface receptor probes. Proc Natl Acad Sci USA 75:2443–2447

    CAS  PubMed  Google Scholar 

  • Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci USA 86:114–118

    CAS  PubMed  Google Scholar 

  • Shapiro RA, Scherer NM, Habecker BA, Subers EM, Nathanson NM (1988) Isolation, sequence, and functional expression of the mouse Ml muscarinic acetylcholine receptor gene. J Biol Chem 263:18397–18403

    CAS  PubMed  Google Scholar 

  • Sheridan PJ, Blum K, Trachtenberg MC (eds) (1988) Steroid Receptors and Disease: Cancer, Autoimmune, Bone, and Circulatory Disorders. Marcel Dekker, Inc., New York, NY

    Google Scholar 

  • Sherman MR, Stevens J (1984) Structure of mammalian steroid receptors: Evolving concepts and methodological developments. Ann Rev Physiol 46:83–105

    CAS  Google Scholar 

  • Shimomura S, Sotobaya T, Futai M, Fukui T (1986) Purification and properties of an auxin-binding protein from maize shoot membranes. J Biochem 99:1513–1524

    CAS  PubMed  Google Scholar 

  • Sibley DR, Benovic JL, Caron MG, Lefkowitz RJ (1988) Phosphorylation of cell surface receptors: A mechanism for regulating signal transduction pathways. Endoc Rev 9:38–56

    CAS  Google Scholar 

  • Singh H, Clerc RG, Lowitz JH (1989) Molecular cloning of sequence-specific DNA binding proteins using recognition site probes. Biechniques 7:252–261

    CAS  Google Scholar 

  • Staros JV, Fanger BO, Faulkner LA, Palaszewski PP, Russo MW (1989) Mechanism of transmembrane signaling by the epidermal growth factor receptor/kinase. In: Moudgil VK (ed) Receptor Phosphorylation. CRC Press, Inc., Boca Raton, FL, p 227–242

    Google Scholar 

  • Steer MW (1988) Plasma membrane turnover in plant cells. J Exp Bot 39:987–996

    Google Scholar 

  • Stein R, Pinkas-Kramarski R, Sokolovsky M (1988) Cloned Ml muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J 7:3031–3035

    CAS  PubMed  Google Scholar 

  • Stoddart JL (1986) Gibberellin receptors. In: Chadwick CM, Garrod DR (eds) Hormones, Receptors and Cellular Interactions in Plants. Cambridge University Press, Cambridge, UK, p 91–114

    Google Scholar 

  • Strader CD, Sigal IS, Blake AD, Cheung AH, Register RB, Rands E, Zemcik BA, Candelore MR, Dixon RAF (1987) The carboxyl terminus of the hamster β -adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell 49:855–863

    CAS  PubMed  Google Scholar 

  • Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RAF (1988) Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J Biol Chem 263:10267–10271

    CAS  PubMed  Google Scholar 

  • Stroud RM, Finer-Moore J (1985) Acetylcholine receptor structure, function, and evolution. Ann Rev Cell Biol 1:317–351

    CAS  PubMed  Google Scholar 

  • Stryer L, Bourne HR (1986) G proteins: A family of signal transducers. Ann Rev Cell Biol 2:391–419

    CAS  PubMed  Google Scholar 

  • Strähle U, Schmid W, Schütz G (1988) Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 7:3389–3395

    PubMed  Google Scholar 

  • Thompson CC, Weinberger C, Lebo R, Evans RM (1987) Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237:1610–1614

    CAS  PubMed  Google Scholar 

  • Trapman J, Klaassen P, Kuiper GGJM, van der Korput JAGM, Faber PW, van Rooij HCJ, Geurts van Kessel A, Voorhorst MM, Mulder E, Brinkmann AO (1988) Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Commun 153:241–248

    CAS  PubMed  Google Scholar 

  • Trischitta V, Wong K-Y, Brunetti A, Scalisi R, Vigneri R, Goldfine ID (1989) Endocytosis, recycling, and degradation of the insulin receptor. Studies with monoclonal antireceptor antibodies that do not activate receptor kinase. J Biol Chem 264:5041–5046

    CAS  PubMed  Google Scholar 

  • Tsai SY, Carlstedt-Duke J, Weigel NL, Dahlman K, Gustafsson J-Ä, Tsai M-J, O’Malley BW (1988) Molecular interactions of steroid hormone receptor with its enhancer element: Evidence for receptor dimer formation. Cell 55:361–369

    CAS  PubMed  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao Y-C, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761

    CAS  PubMed  Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334

    CAS  PubMed  Google Scholar 

  • Walter P, Green S, Greene G, Krust A, Bornert J-M, Jeltsch J-M, Staub A, Jensen E, Scrace G, Waterfield M, Chambon P (1985) Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci USA 82:7889–7893

    CAS  PubMed  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1986a) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324:641–646

    CAS  PubMed  Google Scholar 

  • Weinberger C, Hollenberg SM, Rosenfeld MG, Evans RM (1986b) Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318:670–672

    CAS  Google Scholar 

  • Welshons WV, Lieberman ME, Gorski J (1984) Nuclear localization of unoccupied oestrogen receptors. Nature 307:747–749

    CAS  PubMed  Google Scholar 

  • White MF, Kahn CR (1989) Function of the insulin receptor kinase in the intact cell. In: Moudgil VK (ed) Receptor Phosphorylation. CRC Press, Inc., Boca Raton, FL, p 115–134

    Google Scholar 

  • White MF, Livingston JN, Backer JM, Lauris V, Dull TJ, Ullrich A, Kahn CR (1988) Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 54:641–649

    CAS  PubMed  Google Scholar 

  • Whittaker J, Okamoto AK, Thys R, Bell Gl, Steiner DF, Hofmann CA (1987) High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells. Proc Natl Acad Sci USA 84:5237–5241

    CAS  PubMed  Google Scholar 

  • Williams LT (1989) Signal transduction by the platelet-derived growth factor receptor. Science 243:1564–1570

    CAS  PubMed  Google Scholar 

  • Wong SK-F, Slaughter C, Ruoho AE, Ross EM (1988) The catecholamine binding site of the ß-adrenergic receptor is formed by juxtaposed membrane-spanning domains. J Biol Chem 263:7925–7928

    CAS  PubMed  Google Scholar 

  • Wrange Ö, Eriksson P, Perlmann T (1989) The purified activated glucocorticoid receptor is a homodimer. J Biol Chem 264:5253–5259

    CAS  PubMed  Google Scholar 

  • Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet 19:209–252

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hahn, M.G. (1989). Animal Receptors — Examples of Cellular Signal Perception Molecules. In: Lugtenberg, B.J.J. (eds) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74158-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74158-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74160-9

  • Online ISBN: 978-3-642-74158-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics