Skip to main content

Woher wir das alles wissen: die entscheidenden Experimente

  • Chapter
Genregulation
  • 27 Accesses

Zusammenfassung

Im 1.Teil dieses Kapitels sollen ein paar der wichtigsten Experimente beschrieben werden, die uns die nötigen Grundlagen für das weitere Verständnis liefern. Wir wollen dann einige Modelle aus Kap.1 und 2 mit ausgewählten Experimenten untermauern. Die genauen Daten finden sich in der Literatur, die am Ende des Kapitels angegeben ist, und in darin zitierten weiteren Veröffentlichungen. Die experimentellen Grundlagen von Kap. 3 sollen uns nicht beschäftigen; der Leser kann sie anhand der allgemeinen Literaturangaben am Ende jenes Kapitels nachschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Chadwick P, Pirrotta V, Steinberg R, Hopkins N, Ptashne M (1970) The λ and 434 phage repressors. Cold Spring Harbor Symp Quant Biol 35: 283–294

    CAS  Google Scholar 

  2. Gussin G, Johnson A, Pabo C, Sauer R (1983) Repressor and Cro protein: structure, function, and role in lysogenization. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg R (eds) Lambda II. Cold Spring Harbor, New York, pp 93–123

    Google Scholar 

  3. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318– 356

    Article  PubMed  CAS  Google Scholar 

  4. Johnson AD, Pabo CO, Sauer RT (1980) Bacteriophage λ repressor and Cro protein: interaction with operator DNA. Methods in Enzymol 65: 839–856

    Article  CAS  Google Scholar 

  5. Johnson AD, Poteete AR, Lauer G, Sauer RT, Ackers GK, Ptashne M (1981) λ repressor and Crocomponents of an efficient molecular switch. Nature 294: 217–233

    Article  PubMed  CAS  Google Scholar 

  6. Lewis M, Jeffrey A, Wang J, Ladner R, Ptashne M, Pabo CO (1983) Structure of the operator-binding domain of λ repressor: implication for DNA recognition and gene regulation. Cold Spring Harbor Symp Quant Biol 47: 435–440

    PubMed  Google Scholar 

  7. Lwoff A (1953) Lysogeny. Bacteriol Rev 17: 269–337

    PubMed  CAS  Google Scholar 

  8. Miller JH (1978) The lacl gene: its role in lac operon control and its use as a genetic system. In: Miller JH, Reznikoff WS (eds) The operon. Cold Spring Harbor, New York, pp 31–89

    Google Scholar 

  9. Wharton RP, Ptashne M (1986) An α-helix determines the DNA-binding specificity of a repressor. Trends Biochem Sci 11: 71–73

    Article  CAS  Google Scholar 

  10. Ackers GK, Shea MA, Johnson AD (1982) Quantitative model for gene regulation by λ phage repressor. Proc Natl Acad Sci USA 79: 1129–1133

    Article  PubMed  CAS  Google Scholar 

  11. Allison LA, Moyle M, Shales M, Ingles CJ (1985) Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599–610

    Article  PubMed  CAS  Google Scholar 

  12. Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in E. coli. Gene 25: 167–178

    CAS  Google Scholar 

  13. Anderson WF, Ohlendorf DH, Takeda Y, Matthews BW (1981) Structure of the cro repressor from bacteriophage λ and its interaction with DNA. Nature 290: 754–758

    Article  PubMed  CAS  Google Scholar 

  14. Anderson JE, Ptashne M, Harrison SC (1985) The structure of a phage repressor-operator complex at 7 A resolution. Nature 316: 596–601

    Article  PubMed  CAS  Google Scholar 

  15. Backman K, Ptashne M (1978) Maximizing gene expression on a plasmid using recombination in vitro. Cell 13: 65–71

    Article  PubMed  CAS  Google Scholar 

  16. Bailone A, Levine A, Devoret R (1979) Inactivation of prophage λ repressor in vivo. J Mol Biol 131: 553–572

    Article  PubMed  CAS  Google Scholar 

  17. Bushman FD, Anderson JE, Harrison SC, Ptashne M (1985) Ethylation interference and X-ray crystallography identify similar interactions between 434 repressor and operator. Nature 316: 651–653

    Article  PubMed  CAS  Google Scholar 

  18. Ebright RH (1986) Proposed amino acid-base pair contacts for 13 sequence specific DNA-binding proteins. In: Oxender D (ed) Protein structure, folding, and design. Liss, New York

    Google Scholar 

  19. Echols H, Green L, Oppenheim B, Oppenheim A, Honigman A (1973) Role of the cro gene in bacteriophage λ development. J Mol Biol 80: 203–216

    Article  PubMed  CAS  Google Scholar 

  20. Eisen H, Brachet P, Pereira da Silva L, Jacob F (1970) Regulation of repressor expression in λ. Proc Natl Acad Sci USA 66: 855–862

    Article  PubMed  CAS  Google Scholar 

  21. Eliason J, Weiss MA, Ptashne M (1985) NH2-terminal arm of phage λ repressor contributes energy and specificity to repressor binding and determines the effects of operator mutations. Proc Natl Acad Sci USA 82: 2339–2343

    Article  PubMed  CAS  Google Scholar 

  22. Folkmanis A, Takeda Y, Simuth J, Gussin G, Echols H (1976) Purification and properties of a DNA-binding protein with characteristics expected for the Cro protein of bacteriophage λ, a repressor essential for lytic growth. Proc Natl Acad Sci USA 73: 2249–2253

    Article  PubMed  CAS  Google Scholar 

  23. Galas DJ, Schmitz A (1978) DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5: 3157–3170

    Article  PubMed  CAS  Google Scholar 

  24. Guarente L, Nye JS, Hochschild A, Ptashne M (1982) A mutant λ repressor with a specific defect in its positive control function. Proc Natl Acad Sci USA 79: 2236–2239

    Article  PubMed  CAS  Google Scholar 

  25. Hawley DK, McCIure WR (1983) The effect of a λ repressor mutation on the activation of transcription initiation from the λPRM promoter. Cell 32: 327–333

    Article  PubMed  CAS  Google Scholar 

  26. Hecht MH, Nelson HCM, Sauer RT (1983) Mutations in λ repressor’s aminoterminal domain: implications for protein stability and DNA-binding. Proc Natl Acad Sci USA 80: 2676–2680

    Article  PubMed  CAS  Google Scholar 

  27. Hochschild A, Irwin N, Ptashne M (1983) Repressor structure and the mechanism of positive control. Cell 32: 319–325

    Article  PubMed  CAS  Google Scholar 

  28. Hochschild A, Ptashne M (1986) The recognition helices of λ repressor and λ Cro make homologous contact with the λ operator. Cell 44: 925–933

    Article  PubMed  CAS  Google Scholar 

  29. Humayun Z, Jeffrey A, Ptashne M (1977) Completed DNA sequences and organizations of repressor-binding sites in the operators of phage λ. J Mol Biol 112: 265–277

    Article  PubMed  CAS  Google Scholar 

  30. Humayun Z, Kleid D, Ptashne M (1977) Sites of contact between λ Operators and λ repressor. Nucleic Acids Res 4: 1595–1607

    Article  PubMed  CAS  Google Scholar 

  31. Johnson A (1986) Interaction between a repressor and Cro and the λ operator. J Mol Biol

    Google Scholar 

  32. Johnson A, Meyer BJ, Ptashne M (1978) Mechanism of action of the Cro protein of bacteriophage λ. Proc Natl Acad Sci USA 75: 1783–1787

    Article  PubMed  CAS  Google Scholar 

  33. Johnson AD, Meyer BJ, Ptashne M (1979) Interactions between DNA-bound repressors govern regulation by the λ phage repressor. Proc Natl Acad Sci USA 76: 5061–5065

    Article  PubMed  CAS  Google Scholar 

  34. Kaiser AD (1957) Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3: 42–61

    Article  PubMed  CAS  Google Scholar 

  35. Kaiser AD, Jacob F (1957) Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology 4: 509–521

    Article  PubMed  CAS  Google Scholar 

  36. Little JW (1984) Autodigestion of Lex A and phage λ repressors. Proc Natl Acad Sci USA 81: 1375–1379

    Article  PubMed  CAS  Google Scholar 

  37. Maniatis T, Ptashne M (1973) Multiple repressor binding in the Operators of bacteriophage λ. Proc Natl Acad Sci USA 70: 1531–1535

    Article  PubMed  CAS  Google Scholar 

  38. Matthews BW, Ohlendorf DH, Anderson WF, Takeda Y (1982) Structure of the DNA-binding region of lac repressor inferred from its homology with Cro repressor. Proc Natl Acad Sci USA 79: 1428–1432

    Article  PubMed  CAS  Google Scholar 

  39. Maurer R, Meyer BJ, Ptashne M (1980) I. OR3 and autogenous negative control by repressors. J Mol Biol 139: 147–161

    Article  PubMed  CAS  Google Scholar 

  40. McKay D, Weber I, Steitz T (1982) structure of catabolite gene activator protein at 2.9-8f- resolution. J Biol Chem 257: 9518–9524

    PubMed  CAS  Google Scholar 

  41. Meyer BJ, Kleid DG, Ptashne M (1975) λ repressor turns off transcription of its own gene. Proc Natl Acad Sci USA 72: 4785–4789

    Article  PubMed  CAS  Google Scholar 

  42. Meyer BJ, Maurer R, Ptashne M (1980) II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J Mol Biol 139: 163–194

    Article  PubMed  CAS  Google Scholar 

  43. Meyer BJ, Ptashne M (1980) III: λ repressor directly activates gene transcription. J Mol Biol 139: 195–205

    Article  PubMed  CAS  Google Scholar 

  44. Neubauer Z, Calef E (1970) Immunity phase-shift in defective lysogens: nonmutational hereditary change of early regulation of λ prophage. J Mol Biol 51: 1–13

    Article  PubMed  CAS  Google Scholar 

  45. Ogata R, Gilbert W (1979) DNA-binding site of lac repressor probed by dimethylsulfate methylation of lac operator. J Mol Biol 132: 709–728

    Article  PubMed  CAS  Google Scholar 

  46. Ohlendorf DH, Anderson WF, Fisher RG, Takeda Y, Matthews BW (1982) The molecular basis of DNA-protein recognition inferred from the strueture of cro repressor. Nature 298: 718–723

    Article  PubMed  CAS  Google Scholar 

  47. Oppenheim AB, Neubauer Z, Calef E (1970) The antirepressor: a new element in the regulation of protein synthesis. Nature 226: 31–32

    Article  PubMed  CAS  Google Scholar 

  48. Pabo CO, Krovatin W, Jeffrey A, Sauer RT (1982) The N-terminal arms of X repressor wrap around the operator DNA. Nature 298: 441–443

    Article  PubMed  CAS  Google Scholar 

  49. Pabo CO, Lewis M (1982) The operator-binding domain of λ repressor: structure and DNA recognition. Nature 298: 443–447

    Article  PubMed  CAS  Google Scholar 

  50. Pabo CO, Sauer RT, Sturtevant JM, Ptashne M (1979) The λ repressor contains two domains. Proc Natl Acad Sci USA 76: 1608–1612

    Article  PubMed  CAS  Google Scholar 

  51. Pirrotta V, Chadwick P, Ptashne M (1970) Active form of two coliphage repressors. Nature 227: 41–44

    Article  PubMed  CAS  Google Scholar 

  52. Poteete AR, Ptashne M (1982) Control of transcription by the bacteriophage P22 repressor. J Mol Biol 157: 21–48

    Article  PubMed  CAS  Google Scholar 

  53. Ptashne M (1967) Isolation of the λ phage repressor. Proc Natl Acad Sci USA 57: 306–313

    Article  PubMed  CAS  Google Scholar 

  54. Ptashne M (1967) Specific binding of the λ phage repressor to λ DNA. Nature 214: 232–234

    Article  PubMed  CAS  Google Scholar 

  55. Riggs AD, Suzuki H, Bourgeois S (1970) Lac repressor-operator interaction. J Mol Biol 48: 67–83

    Article  PubMed  CAS  Google Scholar 

  56. Roberts TM, Kacich R, Ptashne M (1979) A general method for maximizing the expression of a cloned gene. Proc Natl Acad Sci USA 76: 760–764

    Article  PubMed  CAS  Google Scholar 

  57. Roberts JW, Roberts CW, Mount DW (1977) Inactivation and proteolytic cleavage of phage λ repressor in vitro in an ATP-dependent reaction. Proc Natl Acad Sci USA 74: 2283–2287

    Article  PubMed  CAS  Google Scholar 

  58. Sauer RT, Pabo CO, Meyer BJ, Ptashne M, Backman KD (1979) Regulatory funetions of λ repressor reside in the amino-terminal domain. Nature 279: 396–400

    Article  PubMed  CAS  Google Scholar 

  59. Sauer RT, Ross MJ, Ptashne M (1982) Cleavage of the λ and P22 repressors by recA protein. J Biol Chem 257: 4458–4462

    PubMed  CAS  Google Scholar 

  60. Sauer RT, Yocum RR, Doolittle RF, Lewis M, Pabo CO (1982) Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature 298: 447–451

    Article  PubMed  CAS  Google Scholar 

  61. Siebenlist A, Gilbert W (1980) Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc Natl Acad Sci 77: 122–126

    Article  PubMed  CAS  Google Scholar 

  62. Takeda Y (1979) Specific repression of in vitro transcription by the Cro repressor of bacteriophage λ. J Mol Biol 127: 177–189

    Article  PubMed  CAS  Google Scholar 

  63. Takeda Y, Folkmanis A, Echols H (1977) Cro regulatory protein speeified by bacteriophage λ. J Biol Chem 252: 6177–6183

    PubMed  CAS  Google Scholar 

  64. Weiss MA, Eliason JL, States DJ (1984) Dynamic filtering by two-dimensional 1H NMR with application to phage λ repressor. Proc Natl Acad Sci USA 81: 6019–6023

    Article  PubMed  CAS  Google Scholar 

  65. Wharton RP, Brown EL, Ptashne M (1984) Substituting an α-helix switches the sequence specific DNA interactions of a repressor. Cell 38: 361–369

    Article  PubMed  CAS  Google Scholar 

  66. Wharton RP, Ptashne M (1985) Changing the binding specificity of a repressor by redesigning an α-helix. Nature 316: 601–605

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ptashne, M. (1989). Woher wir das alles wissen: die entscheidenden Experimente. In: Genregulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74022-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74022-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50236-4

  • Online ISBN: 978-3-642-74022-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics