Skip to main content

Cellular Reorganization in Neuroendocrine Secretion

  • Conference paper

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 9))

Abstract

Cellular reorganization accompanying changes in the physiological state of organisms is an emerging concept based upon rather recent discoveries. Old notions of central nervous systems as being structurally static after development are giving way to conceptualizations involving reorganization of the participating elements as function demands. All aspects of nervous systems should perhaps be thought of as at least having the potential for change and reorganization. Recent developments suggest that any arrangement of elements extant at a given time, or under one set of conditions, should be warily viewed as only one organization among many possible. The inseparability of structure and function has never been more undeniable. Research involving neuroendocrine systems has provided some of the more exciting and provocative ideas of the depth and extent of the reorganization that the nervous system may undergo in response to physiological challenges. It will be the aim of this chapter to present the evidence for function-related cellular reorganization in a neurosecretory system for which the phenomenon is well documented. In addition, the mechanisms involved in the cellular reorganization, to the extent that they are known or can at least be speculated on, will be discussed. Finally, evidence for function-related cellular reorganization in neurosecretory systems for which evidence is just beginning to appear will be reviewed.

Support from NIH research grants NS 09140 and NS 16942 is gratefully acknowledged Neuroscience Program Michigan State University East Lansing, Mi 48824, USA

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso G, Assenmacher I (1984) Ultrastructural analysis of the noradrenergic innervation of rat supraoptic nucleus. Neurosci Lett 49: 45–50.

    PubMed  CAS  Google Scholar 

  • Andrew RD, Dudek FE (1984) Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Tij Neurophysiol 51: 552–566.

    CAS  Google Scholar 

  • Andrew RD, Mac Vicar BA, Dudek FE, Hatton GI (1981) Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus. Science 211: 1187–1189.

    PubMed  CAS  Google Scholar 

  • Armstrong WE, Hatton GI (1978) Morphological changes in the rat supraoptic and paraventricular nuclei during the diurnal cycle. Tibrain Res 157: 407–413.

    CAS  Google Scholar 

  • Armstrong WE, Sladek CD (1982) Spontaneous phasic-firing in supraoptic neurons recorded from hypothalamo-neurohypophysial expiants in vitro. Tineuroendocrinology 34: 405–409.

    CAS  Google Scholar 

  • Armstrong WE, Sladek CD (1985) Evidence for excitatory actions of histamine on supraoptic neurons in vitro: mediation by an HI-type receptor. Tineuroscience 16: 307–322.

    CAS  Google Scholar 

  • Armstrong WE, Warach S, Hatton GI, McNeill TH (1980) Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical analysis. Neuroscience 5: 1931–1958.

    PubMed  CAS  Google Scholar 

  • Armstrong WE, Schöler J, McNeill TH (1982) Immunocytochemical, Golgi and electron microscopic characterization of putative dendrites in the ventral glial lamina of the rat supraoptic nucleus. Neuroscience 7: 679–694.

    PubMed  CAS  Google Scholar 

  • Belin V, Moos F (1986) Paired recording from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization. Tij Physiol 377: 369–390.

    CAS  Google Scholar 

  • Belin V, Moos F, Richard P (1984) Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats — direct proof with paired extracellular recordings. Exp Brain Res 57: 201–203.

    PubMed  CAS  Google Scholar 

  • Brimble MJ, Dyball REJ (1977) Characterization of the responses of oxytocin-and vaso-pressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Tij Physiol 271: 253–271.

    CAS  Google Scholar 

  • Broadwell RD, Oliver C (1981) Golgi apparatus, GERL, and secretory granule formation within neurons of the hypothalamo-neurohypophysial system of control and hyperos-motically stressed mice. Tij Cell Biol 90: 474–484.

    CAS  Google Scholar 

  • Buijs RM, Geffard M, Pool CW, Hoorneman EMD (1984) The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res 323: 65–72.

    CAS  Google Scholar 

  • Bunn SJ, Hanley MR, Wilkin GP (1986) Autoradiographic localization of peripheral benzodiazepine, dihydroalprenolol and arginine vasopressin binding sites in the pituitaries of control, stalk transected and Brattleboro rats. Neuroendocrinology 44: 76–83.

    PubMed  CAS  Google Scholar 

  • Carithers J, Johnson AK (1984) Long term effects on the supraoptic nuclei and neural lobe produced by ablation of the tissue surrounding the preoptic recess. Tibrain Res 305: 123–140.

    CAS  Google Scholar 

  • Carithers J, Dellmann HD, Bealer SL, Brody MJ, Johnson AK (1981) Ultrastructural effects of anteroventral third ventricle lesions on supraoptic nuclei and neural lobes of rats. Brain Res 220: 13–29.

    PubMed  CAS  Google Scholar 

  • Castel M, Gainer H, Dellmann HD (1984) Neuronal secretory systems. Int Rev Cytol 88: 303–459.

    PubMed  CAS  Google Scholar 

  • Cobbett P, Smithson KG, Hatton GI (1985) Dye-coupled magnocellular peptidergic neurons of the rat paraventricular nucleus show homotypic immunoreactivity. Neuroscience 16: 885–895.

    PubMed  CAS  Google Scholar 

  • Cobbett P, Smithson KG, Hatton GI (1986) Immunoreactivity to vasopressin-but not oxy-tocin-associated neurophysin antiserum in phasic neurons of rat hypothalamic paraventricular nucleus. Brain Res 362: 7–16.

    PubMed  CAS  Google Scholar 

  • Cobbett P, Yang QZ, Hatton GI (1987) Incidence of dye coupling among magnocellular paraventricular nucleus neurons in male rats is testosterone dependent. Brain Res Bull 18: 365–370.

    PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. Tij Comp Neurol 169: 221–262.

    CAS  Google Scholar 

  • Crofton JT, Baer PG, Share L, Brooks DP (1985) Vasopressin release in male and female rats: effects of gonadectomy and treatment with gonadal steroid hormones. Endocrinology 117: 1195–1200.

    PubMed  CAS  Google Scholar 

  • Day TA, Renaud LP (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Tibrain Res 303: 233–240.

    CAS  Google Scholar 

  • Dougherty PJ, Yang QZ, Hatton GI (1986) Synaptically mediated responses recorded intracellularly in rat supraoptic nucleus induced by lateral olfactory tract stimulation. Soc Neurosci Abst 12: 1256.

    Google Scholar 

  • Dreifuss JJ, Sandri C, Akert K, Moor H (1975) Ultra-structural evidence for sinusoid spaces and coupling between pituicytes in the rat. Cell Tissue Res 161: 33–45.

    PubMed  CAS  Google Scholar 

  • Finlayson LH, Osborne MP (1975) Secretory activity of neurons and related electrical activity. Tiadv Comp Physiol Biochem 6: 165–258.

    CAS  Google Scholar 

  • Fisher AWF, Price PG, Burford GD, Lederis K (1979) A 3-dimensional reconstruction of the hypothalamo-neurohypophysial system of the rat. The neurons projecting to the neuro/intermediate lobe and those containing vasopressin and somatostatin. Cell Tissue Res 204: 343–354.

    PubMed  CAS  Google Scholar 

  • Fuchs A-R, Saito S (1971) Pituitary oxytocin and vasopressin content of pregnant rats before, during and after parturition. Endocrinology 88: 574–578.

    PubMed  CAS  Google Scholar 

  • Gähwiler BH, Dreifuss JJ (1980) Transition from random to phasic firing induced in neurons cultured from the hypothalamic supraoptic area. Brain Res 193: 415–425.

    PubMed  Google Scholar 

  • Gainer HY, Loh PY, Same Y (1977) Biosynthesis of neuronal peptides. In: Gainer H (ed) Peptides in neurobiology. Plenum, New York, pp 183–219.

    Google Scholar 

  • Gibbs DM (1984) Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sci 35: 487–191.

    PubMed  CAS  Google Scholar 

  • Gregory WA, Tweedle CD, Hatton GI (1980) Ultra-structure of neurons in the paraventricular nucleus of normal, dehydrated and rehydrated rats. Brain Res Bull 5: 301–306.

    PubMed  CAS  Google Scholar 

  • Gutnick MJ, Lobel-Yaakov R, Rimon G (1985) Incidence of neuronal dye-coupling in neocortical slices depends on the plane of section. Neuroscience 15: 659–666.

    PubMed  CAS  Google Scholar 

  • Hatton GI (1976) Nucleus circularis: is it an osmoreceptor in the brain? Brain Res Bull 1: 123–132.

    PubMed  CAS  Google Scholar 

  • Hatton GI (1982) Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission. J Physiol 327: 273–284.

    PubMed  CAS  Google Scholar 

  • Hatton GI, Tweedle CD (1982) Magnocellular neuropeptidergic neurons in hypothalamus: increases in membrane apposition and number of specialized synapses from pregnancy to lactation. Tibrain Res Bull 8: 197–204.

    CAS  Google Scholar 

  • Hatton GI, Walters JK (1973) Induced multiple nucleoli, nucleolar margination, and cell size changes in supraoptic neurons during dehydration and rehydration in the rat. Tibrain Res 59: 137–154.

    CAS  Google Scholar 

  • Hatton GI, Yang QZ (1986) Direct evidence for electrical coupling among rat supraoptic nucleus neurons. Soc Neurosci Abst 12: 1257.

    Google Scholar 

  • Hatton GI, Johnson JI, Malatesta CZ (1972) Supraoptic nuclei of rodents adapted for mesic and xeric environments: numbers of cells, multiple nucleoli and their distributions. J Comp Neurol 145: 43–60.

    PubMed  CAS  Google Scholar 

  • Hatton GI, Armstrong WE, Gregory WA (1978) Spontaneous and osmotically stimulated activity in slices of rat hypothalamus. Brain Res Bull 3: 497–508.

    PubMed  CAS  Google Scholar 

  • Hatton GI, Ho YW, Mason WT (1983) Synaptic activation of phasic bursting in rat supraoptic nucleus neurones recorded in hypothalamic slices. J Physiol 345: 297–317.

    PubMed  CAS  Google Scholar 

  • Hatton GI, Perlmutter LS, Salm AK, Tweedle CD (1984) Dynamic neuronal-glial interactions in hypothalamus and pituitary: implications for control of hormone synthesis and release. Peptides 5(Suppl 1): 121–138.

    PubMed  CAS  Google Scholar 

  • Hatton GI, Cobbett P, Salm AK (1985) Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: intracellular staining, immunocytochemistry and electrophysiology. Brain Res Bull 14: 123–132.

    PubMed  CAS  Google Scholar 

  • Hatton GI, Yang QZ, Cobbett P (1987) Dye coupling among immunocytochemically identified neurons in the supraoptic nucleus of lactating rats. Neuroscience 21: 923–930.

    PubMed  CAS  Google Scholar 

  • Heimer L (1978) The olfactory cortex and the ventral striatum. Limbic mechanisms. In: Livingston KE, Hornykiewicz O (eds) The continuing evolution of the limbic system concept. Plenum, New York, pp 95–187.

    Google Scholar 

  • Hoblitzell ER, Hatton GI, Armstrong WE (1976) Paraventricular nucleus: changes in the medial and lateral cell groups during dehydration and rehydration in the rat. Brain Res Bull 1: 329–332.

    Google Scholar 

  • Hollowell DE, Smithson KG, Hatton GI (1986) Anatomical evidence for olfactory input to the supraoptic nucleus of the rat: an anterograde study employing the lectin Phaseolus vulgaris leucoagglutinin (PHA-L). Soc Neurosci Abst 12: 1256.

    Google Scholar 

  • Holzbauer M, Sharman DF, Godden U, Mann SP, Stephens DB (1980) Effect of water and salt intake on pituitary catecholamines in the rat and domestic pig. Neuroscience 5: 1959–1968.

    PubMed  CAS  Google Scholar 

  • Hösli E, Schousboe A, Hösli L (1986) Amino acid uptake. In: Fedoroff S, Vernadakis A (eds) Astrocytes: biochemistry, physiology and pharmacology of astrocytes, vol 2. Academic, New York, pp 133–153.

    Google Scholar 

  • Hou-Yu A, Kelly DD, Silvermann A-J (1986a) Effects of chronic behavioral stress on cor-ticotropin-releasing hormone and its co-expression with oxytocin in the rat paraventricular nucleus. Soc Neurosci Abst 12: 783.

    Google Scholar 

  • Hou-Yu A, Lamme AT, Zimmerman EA, Silverman A-J (1986 b) Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure. Neuroendocrinology 44: 235–246.

    PubMed  CAS  Google Scholar 

  • Hydén H, Cupello A, Palm A (1987) Increase in chloride ion permeability across the nerve cell membrane after the endogenous antigen S-100 incorporation. Brain Res 404: 405–407.

    PubMed  Google Scholar 

  • Kawamoto K, Kawashima S (1984) Ultrastructural changes and proliferation of pituicytes in mouse posterior pituitary during water deprivation and rehydration. Tiacta Anat 119: 136–141.

    CAS  Google Scholar 

  • Konigsmark BW (1970) Methods for counting neurons. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 315–340.

    Google Scholar 

  • Lafarga M, Palacios G, Perez R (1975) Morphological aspects of the functional synchronization of supraoptic nucleus neurons. Experientia 31: 348–349.

    PubMed  CAS  Google Scholar 

  • Lind RW, von Hoesen GW, Johnson AK (1982) An HRP study of the connections of the subfornical organ of the rat. J Comp Neurol 210: 265–277.

    PubMed  CAS  Google Scholar 

  • Lipton P, Heimbach CJ (1977) The effect of extracellular K+ concentration on protein synthesis in guinea-pig hippocampal slices. Tij Neurochem 28: 1347–1354.

    CAS  Google Scholar 

  • Lipton P, Heimbach CJ (1978) Mechanism of extracellular potassium stimulation of protein synthesis in the in vitro hippocampus. Tij Neurochem 31: 1299–1307.

    CAS  Google Scholar 

  • Martin R, Geis R, Holl R, Schäfer M, Voigt KH (1983) Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: immunoreactive methi-onine5-enkephalin-, leucine5-enkephalin-and cholecystokinin-like substances. Neuroscience 8: 213–227.

    PubMed  CAS  Google Scholar 

  • Mason WT (1980) Supraoptic neurones of rat hypothalamus are osmosensitive. Nature 287: 154–157.

    PubMed  CAS  Google Scholar 

  • Mason WT (1983) Electrical properties of neurones recorded from the rat supraoptic nucleus in vitro. Proc Soc Lond [Biol] 217: 141–161.

    CAS  Google Scholar 

  • Mason CA, Bern HA (1977) Cellular biology of the neurosecretory neuron. In: Kandel ER (ed) Handbook of physiology, vol 1. Waverly, Baltimore, pp 651–689.

    Google Scholar 

  • Mason WT, Ho YW, Eckenstein F, Hatton GI (1983) Mapping of cholinergic neurons associated with rat supraoptic nucleus: combined immunocytochemical and histochemical identification. Brain Res Bull 11: 617–626.

    PubMed  CAS  Google Scholar 

  • Mason WT, Ho YW, Hatton GI (1984) Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience 11: 169–182.

    PubMed  CAS  Google Scholar 

  • Meyer DK, Brownstein MJ (1980) Effect of surgical deafferentation of the supraoptic nucleus on its choline acetyltransferase content. Tibrain Res 193: 566–569.

    CAS  Google Scholar 

  • Minchin MCW, Nordmann JJ (1975) The release of 3H gamma-aminobutyric acid and neurophysin from the isolated rat posterior pituitary. Tibrain Res 90: 75–84.

    CAS  Google Scholar 

  • Miselis RR, Shapiro RF, Hand PJ (1979) Subfornical organ efferents to neural systems for control of body water. Science 205: 1022–1025.

    PubMed  CAS  Google Scholar 

  • Nordmann JJ, Cazalis M, Dayantithi G, Castanas E, Giraud P, Legros J-J, Louis F (1986) Are opioid peptides co-localized with vasopressin or oxytocin in the neural lobe of the rat? Cell Tissue Res 246: 177–182.

    PubMed  CAS  Google Scholar 

  • Orkand RG (1977) Glial cells. In: Kandel ER (ed) Handbook of physiology, vol 1. Waverly, Baltimore, pp 855–875.

    Google Scholar 

  • Palkvotis M, Elekes I, Lang T, Patthy A (1986) Taurine levels in discrete brain nuclei of rats. J Neurochem 47: 1333–1335.

    Google Scholar 

  • Perlmutter LS, Hatton GI, Tweedle CD (1984a) Plasticity in the neurohypophysis in vitro: effects of osmotic changes on pituicytes. Neuroscience 12: 503–511.

    PubMed  CAS  Google Scholar 

  • Perlmutter LS, Tweedle CD, Hatton GI (1984b) Neuronal glial plasticity in the supraoptic dendritic zone: dendritic bundling and double synapse formation at parturition. Neuroscience 13: 769–779.

    PubMed  CAS  Google Scholar 

  • Perlmutter LS, Tweedle CD, Hatton GI (1985) Neuronal/glial plasticity in the supraoptic dendritic zone in response to acute and chronic dehydration. Brain Res 361: 225–232.

    PubMed  CAS  Google Scholar 

  • Piekut DT, Joseph SA (1985) Relationship of CRF-immunostained cells and magnocellular neurons in the paraventricular nucleus of rat hypothalamus. Tipeptides 6: 873–882.

    CAS  Google Scholar 

  • Pittman QJ, Blume HW, Renaud LP (1981) Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electro-physiological study in the rat. Brain Res 215: 15–28.

    PubMed  CAS  Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Tineuroscience 7: 773–808.

    CAS  Google Scholar 

  • Renaud LP, Rogers J, Sgro S (1983) Terminal degeneration in supraoptic nucleus following subfornical organ lesions: ultrastructural observations in the rat. Brain Res 275: 365–368.

    PubMed  CAS  Google Scholar 

  • Ruoff HJ, Mathison R, Lederis K (1976) Cyclic 3′5′-adenosine monophosphate in the hypothalamo-neurohypophysial system of normal, NaCl-treated and lactating rats. Neuroendocrinology 22: 18–29.

    PubMed  CAS  Google Scholar 

  • Salm AK, Hatton GI (1980) An immunocytochemical study of astrocytes associated with the rat supraoptic nucleus. Soc Neurosci Abst 6: 547.

    Google Scholar 

  • Salm AK, Hatton GI, Nilaver G (1982) Immunoreactive glial fibrillary acidic protein in pituicytes of the rat neurohypophysis. Brain Res 236: 471–476.

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA 81: 1883–1887.

    PubMed  CAS  Google Scholar 

  • Scalia F, Winans SS (1975) The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. Tij Comp Neurology 161: 35–56.

    Google Scholar 

  • Sgro S, Ferguson AV, Renaud LP (1984) Subfornical organ-supraoptic nucleus connections: an electrophysiologic study in the rat. Brain Res 303: 7–13.

    PubMed  CAS  Google Scholar 

  • Shain WG, Martin DL (1984) Activation of beta-adrenergic receptors stimulates taurine release from glial cells. Ticell Mol Neurobiol 4: 191–196.

    CAS  Google Scholar 

  • Sherman TG, Civelli O, Douglass J, Herbert E, Watson SJ (1986a) Coordinate expression of hypothalamic pro-dynorphin and pro-vasopressin mRNAs with osmotic stimulation. Neuroendocrinology 44: 222–228.

    PubMed  CAS  Google Scholar 

  • Sherman TG, McKelvy JF, Watson SJ (1986b) Vasopressin mRNA regulation in individual hypothalamic nuclei: a northern and in situ hybridization analysis. J Neurosci 6: 1685–1694.

    PubMed  CAS  Google Scholar 

  • Sladek CD, Johnson AK (1983) Effect of anteroventral third ventricle lesions on vasopressin release by organ-cultured hypothalamo-neurohypophyseal expiants. Tineuroendocrinology 37: 78–84.

    CAS  Google Scholar 

  • Sladek CD, Joynt RJ (1979) Angiotensin stimulation of vasopressin release from the rat hypothalamo-neurohypophyseal system in organ culture. Tiendocrinology 104: 148–153.

    CAS  Google Scholar 

  • Sladek JR Jr, McNeill TH (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. IV. Verification of catecholamine-neurophysin interactions through single-section analysis. Cell Tissue Res 210: 181–189.

    CAS  Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14: 741–759.

    PubMed  CAS  Google Scholar 

  • Suess U, Pliska V (1981) Identification of the pituicytes as astroglial cells by indirect immunofluorescence-staining for the glial fibrillary acidic protein. Tibrain Res 221: 27–33.

    CAS  Google Scholar 

  • Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167: 227–256.

    PubMed  CAS  Google Scholar 

  • Swanson LW (1977) Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128: 356–363.

    Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Tineurosci Lett 17: 307–312.

    CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Berod A, Hartman BK, Helle KB, Vanorden DE (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J Compar Neurol 196: 271–285.

    CAS  Google Scholar 

  • Taylor CP, Dudek FE (1982) Synchronous neural after-discharges in rat hippocampal slices without active chemical synapses. Tiscience 218: 810–812.

    CAS  Google Scholar 

  • Taylor CP, Dudek FE (1984a) Excitation of hippocampal pyramidal cells by an electrical field effect. J Neurophysiol 52: 126–142.

    PubMed  CAS  Google Scholar 

  • Taylor CP, Dudek FE (1984b) Synchronization without active chemical synapses during hippocampal after-discharges. J Neurophysiol 52: 143–155.

    PubMed  CAS  Google Scholar 

  • Theodosis DT (1985) Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus. Nature 313: 682–684.

    PubMed  CAS  Google Scholar 

  • Theodosis DT, Poulain DA (1984) Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation. Tineuroscience 11: 183–193.

    CAS  Google Scholar 

  • Theodosis DT, Poulain DA, Vincent J-D (1981) Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 6: 919–929.

    PubMed  CAS  Google Scholar 

  • Theodosis DT, Paul L, Tappaz ML (1986) Immunocytochemical analysis of the GAB Aergic innervation of oxytocin-and vasopressin-secreting neurons in the rat supraoptic nucleus. Neuroscience 19: 207–222.

    PubMed  CAS  Google Scholar 

  • Thomson AM (1984) Correlations between the firing of supraoptic neurones in slices of rat brain. Exp Brain Res 54: 217–224.

    PubMed  CAS  Google Scholar 

  • Tribollet E, Armstrong WE, Dubois-Dauphin M, Dreifuss JJ (1985) Extra-hypothalamic afferent imputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques. Neuroscience 15: 135–148.

    PubMed  CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1976) Ultrastructural comparisons of neurons of supraoptic and circularis nuclei in normal and dehydrated rats. Tibrain Res Bull 1: 103–122.

    CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1977) Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glial during minimal dehydration and rehydration. Ticell Tissue Res 181: 59–72.

    CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1980a) Evidence for dynamic interactions between pituicytes and neurosecretory axons in the rat. Neuroscience 5: 661–667.

    PubMed  CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1980b) Glial cell enclosure of neurosecretory endings in the neurohypophysis of the rat. Brain Res 192: 555–559.

    Google Scholar 

  • Tweedle CD, Hatton GI (1982) Magnocellular neuropeptidergic terminals in neurohypophysis: rapid glial release of enclosed axons during parturition. Tibrain Res Bull 8: 205–209.

    CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1984a) Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states. Brain Res 309: 373–376.

    PubMed  CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1984b) Ultrastructure of catecholaminergic synapses in the rat supraoptic nucleus during different hydration states. Soc Neurosci Abstracts 10: 209.

    Google Scholar 

  • Tweedle CD, Hatton GI (1987) Morphological adaptability at neurosecretory axonal endings on the neurovascular contact zone of the rat neurohypophysis. Tineuroscience 20: 241–246.

    CAS  Google Scholar 

  • van den Pol AN (1982) The magnocellular and parvocellular paraventricular nucleus of rat: intrinsic organization. J Comp Neurol 206: 317–345.

    PubMed  Google Scholar 

  • Vandesande F, Dierickx K, DeMey J (1977) The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tissue Res 130: 443–452.

    Google Scholar 

  • van Leeuwen FW, Pool CW, Sluiter AA (1983) Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neuroscience 8: 229–241.

    PubMed  Google Scholar 

  • Wakerley JB, Poulain DA, Brown D (1978) Comparison of firing patterns in oxytocin-and vasopressin-releasing neurones during progressive dehydration. Brain Res 148: 425–440.

    PubMed  CAS  Google Scholar 

  • Walz W, Hertz L (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Tiprog Neurobiol 20: 133–183.

    CAS  Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van Wimersma Greidanus TB (1982) Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216: 85–87.

    PubMed  CAS  Google Scholar 

  • Wittkowski W, Brinkmann H (1974) Changes of extent of neurovascular contacts and number of neuro-glial synaptoid contacts in the pituitary posterior lobe of dehydrated rats. Tianat Embryol 146: 157–165.

    CAS  Google Scholar 

  • Wolfson B, Manning RW, Davis LG, Arentzen Jr R, Baldino F (1985) Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy. Nature 315: 59–61.

    PubMed  CAS  Google Scholar 

  • Yamashita H, Inenaga K, Kawata M, Sano Y (1983) Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: immunocytochemical and electrophysiological studies. Neurosci Lett 37: 87–92.

    PubMed  CAS  Google Scholar 

  • Yang QZ, Hatton GI (1987) Dye coupling among rat supraoptic nucleus neurons without dendritic damage: differential incidence in nursing mother and virgin rats. Tibrain Res Bull 19: 559–565.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hatton, G.I. (1988). Cellular Reorganization in Neuroendocrine Secretion. In: Ganten, D., Pfaff, D., Pickering, B. (eds) Stimulus-Secretion Coupling in Neuroendocrine Systems. Current Topics in Neuroendocrinology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73495-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73495-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73497-7

  • Online ISBN: 978-3-642-73495-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics