Skip to main content

Abstract

Like all fish, elasmobranchs swim in a dense viscous fluid which has at once profound effects upon the design of their locomotor system, and by buoying them up, enables them partially or completely to escape the effects of gravity. So far as the locomotor system is concerned, the main design constraint is that in such a fluid the drag opposing forward motion increases rapidly as swimming speed increases, so that to operate over a wide speed range, the locomotor muscle has to provide a rather wide range of power output. Just how wide this range may be is not certainly known for any elasmobranch species, since little information is available about the speed range over which any given species operates. In the small dogfish Scyliorhinus, minimum cruising speed (below which insufficient dynamic lift can be generated to maintain horizontal position) is around 25 cm s−1 whilst burst speed is probably around 1 ms−1. Like most sharks and rays, Scyliorhinus is relatively well-streamlined (though not so superbly as fast-swimming lamnids) and skin friction drag is much the most important drag component opposing forward motion: pressure drag and lift-associated vortex drag are of minor consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RMcN (1965) The lift produced by the heterocercal tails of selachii. J Exp Biol 43: 131–138

    Google Scholar 

  • Alexander RMcN (1968) Animal mechanics. Sidgwick and Jackson, London

    Google Scholar 

  • Alexander RMcN (1969) The orientation of muscle fibres in the myomeres of fishes. J Mar Biol Assoc UK 49: 263–290

    Article  Google Scholar 

  • Altringham JD, Johnston IA (1982) The pCa-tension and force-velocity characteristics of skinned fibres isolated from fast and slow muscles. J Physiol (Lond) 333: 421–429

    CAS  Google Scholar 

  • Altringham JD, Yancey PH, Johnston IA (1982) The effects of osmoregulatory solutes on tension generation by dogfish skinned muscle fibres. J Exp Biol 96: 443–445

    CAS  Google Scholar 

  • Baldridge HD (1972) Accumulation and function of liver oil in Florida sharks. Copeia 1972: 306–325

    Article  Google Scholar 

  • Barets A (1961) Contribution à l’étude des systèmes moteurs “lents” et “rapides” du muscle lateral des téléostéens. Arch Anat Microsc Morphol Exp 50 suppl: 91–187

    Google Scholar 

  • Bechert DW, Hoppe G, Reif W-E (1985) On the drag reduction of the shark skin. Am Inst Aeron Astron shear flow control conf 1985: 1–18

    Google Scholar 

  • Bigelow HB, Schroeder WC (1948) Sharks. In: Fishes of the Western North Atlantic ptl, Mem Sears Found Mar Res 1: 59–546

    Google Scholar 

  • Blake RW (1983) Fish locomotion. Cambridge University Press, London

    Google Scholar 

  • Bone Q (1964) Patterns of muscular innervation in the lower chordates. Int Rev Neurobiol 6: 99–147

    Article  PubMed  CAS  Google Scholar 

  • Bone Q (1966) On the function of the two types of myotomal muscle fibre in elasmobranch fish. J Mar Biol Assoc UK 46: 321–349

    Article  Google Scholar 

  • Bone Q (1972 a) The dogfish neuromuscular junction: dual innervation of vertebrate striated muscle fibres? J Cell Sci 10:657–665

    PubMed  CAS  Google Scholar 

  • Bone Q (1972 b) Hydrodynamic functions of integument and buoyancy in the castor oil fish Ruvettus. Copeia 1972: 78–87

    Article  Google Scholar 

  • Bone Q (1975) Muscular and energetic aspects of fish swimming. In: Wu T Y-T, Brokaw CJ

    Google Scholar 

  • Brennen C (eds) Swimming and flying in nature. Plenum, New York, pp 493–528

    Google Scholar 

  • Bone Q, Chubb AD (1975) The structure of stretch receptor endings in the fin muscles of rays. J Mar Biol Assoc UK 55: 939–943

    Article  Google Scholar 

  • Bone Q, Chubb AD (1976) On the structure of corpuscular proprioceptive endings in sharks. J Mar Biol Assoc UK 56: 925–28.

    Article  Google Scholar 

  • Bone Q, Chubb AD (1978) The histochemical demonstration of myofibrillar ATPase in elasmobranch muscle. Histochem J 10: 489–94.

    Article  Google Scholar 

  • Bone Q, Roberts BL (1969) The density of elasmobranchs. J Mar Biol Assoc UK 49: 913–37

    Article  Google Scholar 

  • Bone Q, Johnston I A, Pulsford, A, Ryan KP (1986) Contractile properties and ultrastructure of three types of muscle fibre in the dogfish myotome. J Muscle Res Cell Motil 7: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Brett JR, Blackburn JM (1978) Metabolic rate and energy expenditure in the spiny dogfish Squalus acanthias. J Fish Res Board Can 35: 816–21

    Article  Google Scholar 

  • Carey FG, Teal JM (1969) Mako and porbeagle: warm-bodied sharks. Comp Biochem Physiol 28: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW, Lawson KD, Beckett JS (1971) Warm-bodied fish. Am Zool 11: 137–45

    Google Scholar 

  • Carey FG, Kanwisher JW, Brazier O, Gabrielson G, Casey JG, Pratt HL (1982) Temperature and activities of a white shark Careharodon carcharias. Copeia 1982: 254–60

    Article  Google Scholar 

  • Carey FG, Casey JG, Pratt HL, Urquhart D, Mosker JE (1985) Temperature, heat production and heat exchange in lamnid sharks. Mem S Calif Acad Sci 9: 92–108

    Google Scholar 

  • Compagno LJV (1984) F.A.O. Species catalogue. Sharks of the World. Fish Synops FAO 125 4 pt 1: 249 pt 2: 655

    Google Scholar 

  • Corner EDS, Denton EJ, Forster GR (1969) On the buoyancy of some deep sea sharks. Proc R Soc Lond Ser B 171: 415–429

    Article  Google Scholar 

  • Crabtree B, Newsholme EA (1972) The activities of Phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J 126: 49–58

    PubMed  CAS  Google Scholar 

  • Crabtree B, Higgins SJ, Newsholme EA (1972) The activities of pyruvate carboxylase, phosphoenol- pyruvate carboxylase and fructose diphosphatase in muscles from vertebrates and invertebrates. Biochem J 130:391–396

    PubMed  CAS  Google Scholar 

  • Fischer EH, Blum HE, Byers B, Heizmann C, Kerrick GW, Lehky P, Malencik DA, Pocinwong S (1975) Concerted regulation of glycogen metabolism and muscle contraction. In: Shaltiel S (ed) Metabolic interconversion of enzymes. Springer, Berlin Heidelberg New York, pp 1–8

    Google Scholar 

  • Fischer EH, Alaba JO, Brautigan DL, Kerrick WGL, Malencik DA, Moeschier HJ, Picton C, Pocinwong S (1978) Evolutionary aspects of the structure and regulation of Phosphorylase kinase. In: Choh Hao Li (ed) Versatility of proteins. Academic Press, London, pp 133–149

    Google Scholar 

  • Forster GR (1965)Raja richardsonii from the continental slope of south-west England. J Mar Biol Assoc UK 45: 773–777

    Article  Google Scholar 

  • Forster GR (1967) A new deep-sea ray from the Bay of Biscay. J Mar Biol Assoc UK 47: 281–286

    Article  Google Scholar 

  • Gerday Ch, Teuwis JC (1972) Isolation and characterization of the main parvalbumins from Raja clavata and Raja montagui white muscles. Biochim Biophys Acta 271: 320–331

    PubMed  CAS  Google Scholar 

  • Giaja J, Markovic-Giaja L (1957) La fatigue des poissons. CR Soc Biol 151: 1204–1205

    CAS  Google Scholar 

  • Gillis JM, Gerday C (1977) Calcium movement between myofibrils, parvalbumins and sarcoplasmic reticulum in muscle. In: Wassermann RH et al. (eds) Calcium binding protein and calcium function. Elsevier, North Holland, Amsterdam

    Google Scholar 

  • Hagiwara S, Takahashi K (1967) Resting and spike potentials of skeletal muscle fibres in salt-water elasmobranch and teleost fish. J Physiol (Lond) 190: 499–518

    CAS  Google Scholar 

  • Hagiwara S, Takahashi K (1974) Mechanism of ion permeation through the muscle fibre membrane of an elasmobranch fish, Taeniura lymma. J Physiol (Lond) 238: 109–128

    CAS  Google Scholar 

  • Harden Jones FR (1973) Tail beat frequency, amplitude, and swimming speed of a shark tracked by sector scanning sonar. J Cons Int Explor Mer 38: 58–86

    Google Scholar 

  • Harris JE (1936) The role of the fins in the equilibrium of the swimming fish. I. Wind tunnel test on a model of Mustelus canis (Mitchell). J Exp Biol 13: 476–493

    Google Scholar 

  • Hartmann FA, Lewis LA, Brownall KA, Shelden FF, Walther RR (1941) Some blood constituents of the normal skate. Physiol Zool 14: 476–486

    CAS  Google Scholar 

  • Jarman GM (1961) A note on the shape of fish myotomes. Symp Zool Soc Lond 5: 33–35

    Google Scholar 

  • Johnston IA (1980) Contractile properties of fish fast muscle fibres. Mar Biol Lett 1: 323–328

    Google Scholar 

  • Johnston IA (1981) Structure and function of fish muscles. Symp Zool Soc Lond 48: 71–113

    CAS  Google Scholar 

  • Johnston IA (1983) Dynamic properties of fish muscle. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger, New York, pp 36–67

    Google Scholar 

  • Johnston I A, Sidell BD (1984) Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase activity in a cold-temperate fish. J Exp Biol 111: 179–189

    PubMed  CAS  Google Scholar 

  • Kashapova LA, Sakharov DA (1976) Dual innervation of fast fibres in trunk muscles of larval lamprey. Dokl Akad Nauk SSSR 231: 1495–1496

    PubMed  CAS  Google Scholar 

  • Kashapova LA, Sakharov DA (1978) Nervous apparatus of skeletal muscles in primitive vertebrates: dual innervation of white muscle. Zh Obshch Biol 39: 719–733

    Google Scholar 

  • Klausewitz W (1964) Der Lokomotionsmodus der Fliigelrochen (Myliobatoidei). Zool Anz 173: 111–120

    Google Scholar 

  • Klimley AP, Brown, ST (1983) Stereophotography for the field biologist: measurement of lengths and three-dimensional positions of freeswimming sharks. Mar Biol 74: 175–185

    Article  Google Scholar 

  • Lannergren J (1978) The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis. J Physiol (Lond) 121: 318–340

    Google Scholar 

  • Levin A, Wyman J (1927) The viscous elastic properties of muscle. Proc R Soc Lond Ser B 101: 218–243

    Article  Google Scholar 

  • Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44: 265–301

    Article  Google Scholar 

  • Lighthill MJ (1975) Mathematical biofluid dynamics. Philadelphia: Society for Industrial and applied mathematics

    Google Scholar 

  • Lorenzini S (1678) Osservazioni intorno alle Torpedini. Onofri, Florence.

    Google Scholar 

  • Malins DC (1968) Metabolism of glycerol ether-containing lipids in dogfish. J Lipid Res 9: 687–692

    PubMed  CAS  Google Scholar 

  • Malins DC, Baron A (1970) Glyceryl ether metabolism: regulation of buoyancy in dogfish Squalus acanthias. Science 167: 79–80

    Article  PubMed  CAS  Google Scholar 

  • Malins DC, Sargent JR (1971) Biosynthesis of alkyldiacylglycerols and triacylglycerols in a cell-free system from the liver of dogfish (Squalus acanthias) Biochemistry 10: 1107–1110

    Article  PubMed  CAS  Google Scholar 

  • Marey EJ (1894) Le mouvement. Masson, Paris

    Google Scholar 

  • Motta PJ (1977) Anatomy and functional morphology of dermal collagen fibers in sharks. Copeia 1977:454–464

    Google Scholar 

  • Nishimoto J-i (1981) Effect of urea on the Mg2 + -ATPase activity of myofibrils prepared from marine elasmobranch muscle. Bull Jpn Soc Sci Fish 47: 1391

    CAS  Google Scholar 

  • Ono RD (1983) Dual motor innervation in the axial musculature of fishes. J Fish Biol 22: 395–408.

    Article  Google Scholar 

  • Priede IG (1984) A basking shark(Cetorhinus maximus) tracked by satellite together with simultaneous remote sensing. Fish Res 2: 201–216

    Article  Google Scholar 

  • Ranzi S, Zezza P (1936) Fegato, maturita sessuale e gestazione nelTrygon violacea. Pubbl Stn Zool Napoli 15: 355–367

    Google Scholar 

  • Reif W-E (1978) Protective and hydrodynamic function of the dermal skeleton of elasmobranchs. Neues Jahrb Geol Palaeontol Abh 157: 133–141

    Google Scholar 

  • Reif W-E (1985) Morphology and hydrodynamic effects of the scales of fast swimming sharks. Fortschr Zool 30: 483–485

    Google Scholar 

  • Reif W-E, Dinkelacker A (1982) Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrb Geol Palaeontol Abh 164: 184–187

    Google Scholar 

  • Ridge RMAP (1977) Physiological responses of stretch receptors in the pectoral fin of the ray, Raja clavata. J Mar Biol Assoc UK 57: 535–541

    Article  Google Scholar 

  • Roberts BL (1969 a) The buoyancy and swimming movements of electric rays. J Mar Biol Assoc UK 49: 621–640

    Article  Google Scholar 

  • Roberts BL (1969 b) The response of a proprioceptor to the undulatory movements of dogfish. J Exp Biol 51: 775–785

    Google Scholar 

  • Sargent JR, Gatten RR, McIntosh R (1971) Metabolic relationships between fatty alcohol and fatty acid in the liver of Squalus acanthias. Mar Biol 10: 346–355

    Article  CAS  Google Scholar 

  • Simons JR (1970) The direction of the thrust produced by the heterocercal tails of two dissimilar elasmobranchs; the Port Jackson shark, Heterodontusportusjacksoni (Meyer), and the piked dogfish, Squalus megalops (Macleay). J Exp Biol 52: 95–107

    Google Scholar 

  • Stanfield PR (1972) Electrical properties of white and red muscle fibres of the elasmobranch fish Scyliorhinus canicula. J Physiol (Lond) 222: 161–186

    CAS  Google Scholar 

  • Thomson KS (1976) On the heterocercal tail in sharks. Paleobiology 2: 19–38

    Google Scholar 

  • Thomson KS, Simanek DE (1977) Body form and locomotion in sharks. Am Zool 17: 343–354

    Google Scholar 

  • Thorson TB, Cowan CM, Watson DE (1967) Potamotrygon spp.: elasmobranchs with low urea content. Science 158: 375–377

    Article  PubMed  CAS  Google Scholar 

  • Totland GK, Kryvi H, Bone Q, Flood PR (1981) Vascularisation of the lateral muscle of some elasmobranchiomorph fishes. J Fish Biol 18: 223–234

    Article  Google Scholar 

  • Wainwright SA (1983) To bend a fish. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger Press pp 68–91

    Google Scholar 

  • Wainwright SA, Vosburgh F, Hebrank JH (1978) Shark skin: function in locomotion. Science 202: 747–749

    Article  PubMed  CAS  Google Scholar 

  • Walsh MJ (1980) Drag characteristics of V-groove and transverse curvature riblets. In: Hough GR (ed) Viscous flow drag reduction Prog Astronaut Aeronaut 72: 168–184

    Google Scholar 

  • Webb PW (1971) The swimming energetics of trout. I. Thrust and power output at cruising speeds. J Exp Biol 55: 489–520

    PubMed  CAS  Google Scholar 

  • Webb PW, Keyes RS (1982) Swimming kinematics of sharks. Fish Bull 80: 803–812

    Google Scholar 

  • Weihs D (1973) Mechanically efficient swimming techniques for fish with negative buoyancy. J Mar Res 31: 194–209

    Google Scholar 

  • Weihs D (1977) Effects of size on sustained swimming speeds of aquatic organisms. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, New York, pp 333–338

    Google Scholar 

  • Weihs D (1981) Body section variations in sharks — an adaptation for efficient swimming. Gopeia 1981: 217–219

    Google Scholar 

  • Weihs D, Webb PW (1983) Optimization of locomotion. In: Webb PW, Weihs D (eds) Fish Biomechanics. Praeger, New York, pp 339–371

    Google Scholar 

  • Weihs D, Keyes RS, Stalls DM (1981) Voluntary swimming speed of two species of large carcharhinid sharks. Copeia 1981: 220–222

    Google Scholar 

  • Willemse J J (1972) Arrangement of connective tissue fibres in the musculus lateralis of the spiny dogfishSqualus acanthias. Z Morphol Tiere 72: 221–244

    Article  Google Scholar 

  • Yancey PH, Somero GN (1979) Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranchs. Biochem J 183: 317–323

    PubMed  CAS  Google Scholar 

  • Yancey PH, Somero GN (1980) Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J Exp Zool 212: 205–213

    Article  CAS  Google Scholar 

  • Young JZ (1933) The autonomic nervous system of selachians. Q J Microsc Sci 75: 571–624

    Google Scholar 

  • Zammit VA, Newsholme EA (1979) Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem J 184: 313–322

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bone, Q. (1988). Muscles and Locomotion. In: Shuttleworth, T.J. (eds) Physiology of Elasmobranch Fishes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73336-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73336-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73338-3

  • Online ISBN: 978-3-642-73336-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics