Skip to main content

The Cholinergic System in Aging

  • Chapter
The Cholinergic Synapse

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 86))

Abstract

Based on findings of age-dependent modifications of the cholinergic synapse, two major hypotheses on aging of the cholinergic system have been advanced. The first is a general hypothesis of senescence of synaptic transmission which considers as a primary effect of aging a breakdown of membrane mechanisms resulting in a reduced availability of precursors and in a defect in transmitter release (Giacobini 1982 a, 1983). This condition in its cholinergic manifestation leads initially to a decreased capacity of neurotransmitter synthesis and then to a decreased content and release of acetylcholine (ACh). Together, these may have an effect similar to ‘chemical denervation’. It is not known whether or not this hypothesis applies only to normal conditions of aging or can also be extended to pathological conditions such as Alzheimer’s disease. The second is a cholinergic hypothesis of geriatric memory dysfunction which was suggested by Bartus et al. (1982, 1985 a, b) and applies to the deficits seen in Alzheimer’s disease. While the first hypothesis is based mainly on data from experimental animals, the second is supported exclusively by findings on humans since there is no adequate animal model of the disease. There are, however, limitations in the use of postmortem cerebral tissue which apply particularly to biochemical investigations in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Applegate MD, Landfield PW (1985) Vesicle mobilization and depletion during frequency potentiation and depression in the hippocampus of aged and young rats. Soc Neurosci Abstr 895:261.13

    Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Blessed G, Fairbairn A (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40:199–205

    PubMed  CAS  Google Scholar 

  • Baquer NZ, Duddridge RJ, Hothersall J (1983) The effect of aging of ATP and energy linked enzymes in rat brain. J Neurochem 41:S22

    Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Pontecorvo MJ, Flicker C (1985 a) The cholinergic hypothesis: a historical overview, current perspective and future directions. Ann NY Acad Sci 444:332–358

    PubMed  CAS  Google Scholar 

  • Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK (1985 b) Selective memory loss following nucleus basalis lesions: long-term behavioral recovery despite persistent cholinergic deficiencies. Pharm Biochem Behav 23:125–135

    CAS  Google Scholar 

  • Björklund H, Hoffer B, Olson L, Palmer M, Seiger A (1984a) Enkephalin immunoreactivity in iris nerves: distribution in normal and grafted irides, persistence and enhanced fluorescence after denervations. Histochemistry 80:1–7

    PubMed  Google Scholar 

  • Björklund H, Dahl D, Olson L, Seiger A (1984b) Glial fibrillary acidic protein-like immunoreactivity in the iris: development, distribution and reactive changes following transplantation. J Neurosci 4 (4):978–988

    PubMed  Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    PubMed  CAS  Google Scholar 

  • Brito GNO, Davis BJ, Stopp LC, Stanton ME (1983) Memory and the septo-hippocampal cholinergic system in the rat. Psychopharmacology 81:315–320

    PubMed  CAS  Google Scholar 

  • Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36:174–182

    PubMed  CAS  Google Scholar 

  • Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    PubMed  CAS  Google Scholar 

  • Cardasis Ca (1983) Ultrastructural evidence of continued reorganization at the aging (11–26 months) rat soleus neuromuscular junction. Anat Rec 207:399–415

    PubMed  CAS  Google Scholar 

  • Chiappinelli V, Giacobini E, Pilar G, Uchimura H (1976) Induction of cholinergic enzymes in chick ciliary ganglion and iris muscle cells during synapse formation. J Physiol (Lond) 257:749–766

    CAS  Google Scholar 

  • Clarke DJ, Gage FH, Björklund A (1985) Formation of cholinergic synapses in the dentate gyrus of behaviorally impaired young and aged rats by grafted basal forebrain neurons. Soc Neurosci Abstr

    Google Scholar 

  • Coers C, Telerman-Toppet M, Gerard JM (1973) Terminal innervation ratio in neuromuscular disease. Arch Neurol 29:210–222

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    PubMed  CAS  Google Scholar 

  • Davies P (1979) Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 1971:319–327

    Google Scholar 

  • Davies P, Maloney AFJ (1976) Selective loss of central cholinergic neurons in Alzheimer disease. Lancet 2:1403

    PubMed  CAS  Google Scholar 

  • Dean RL, Goas JA, Lippa AS, Bartus RT (1979) Changes in behaviour and receptor binding in aged vs. young mice. Soc Neurosci Abstr 9:5

    Google Scholar 

  • Domino EG, Dren AT, Giardina WJ (1978) Biochemical and neurotransmitter changes in the aging brain. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 1507–1515

    Google Scholar 

  • Dravid AR, VanDeusen EB (1984) Recovery of enzyme markers for cholinergic terminals in septo-temporal regions of the hippocampus following selective fimbrial lesions in adult rats. Brain Res 324:119–128

    PubMed  CAS  Google Scholar 

  • Duncan D (1934) Determination of number of nerve fibers in eighth thoracic and largest lumbar ventral roots. J Comp Neurol 59:47–60

    Google Scholar 

  • Ehinger B (1967) Adrenergic nerves in the avian eye and ciliary ganglion. Z Zellforsch 82:577–588

    PubMed  CAS  Google Scholar 

  • Ehinger B, Falck B (1966) Concomitant adrenergic and parasympathetic fibres in the rat iris. Acta Physiol Scand 67:201–207

    PubMed  CAS  Google Scholar 

  • Fahim MA, Robbins N (1982) Ultrastructural studies of young and old mouse neuromuscular junctions. J Neurocytol 11:641–656

    PubMed  CAS  Google Scholar 

  • Fahim MA, Robbins N (1985) Transmitter release and ultrastructure of young and old mouse neuromuscular junctions in low calcium solutions. Soc Neurosci Abstr 15:733

    Google Scholar 

  • Fahim MA, Holley JA, Robbins N (1983) Scanning and light microscopic study of age changes at a neuromuscular junction in the mouse. J Neurocytol 12:13–15

    PubMed  CAS  Google Scholar 

  • Fisher A, Mantione CR, Abraham DJ, Hanin I (1982) Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. J Pharmacol Exp Ther 222:140–145

    PubMed  CAS  Google Scholar 

  • Flicker C, Dean RL, Watkins DL, Fisher SK, Bartus RT (1983) Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem Behav 18:973–981

    PubMed  CAS  Google Scholar 

  • Freund G (1980) Cholinergic receptor loss in brains of aging mice. Life Sci 26:371–375

    PubMed  CAS  Google Scholar 

  • Frolkis VV (1970) Regulation, adaptation and aging (in Russian). Nauka, Leningrad

    Google Scholar 

  • Frolkis VV, Bezrukof VV, Duplenko YK, Shghegoleva IV, Shevtchuk VG, Verkhratsky NS (1973) Acetylcholine metabolism and cholinergic regulation of functions in aging. Gerontologia 19:45

    PubMed  CAS  Google Scholar 

  • Frolkis VV, Martynenko OA, Zamostyan VP (1976) Aging of the neuromuscular apparatus. Gerontology 22:244–279

    PubMed  CAS  Google Scholar 

  • Fujisawa K (1976) Some observations on the skeletal musculature of aged rats. Exp Gerontol 11:43

    PubMed  CAS  Google Scholar 

  • Gage FH, Björklund A (1985) Specificity of intrahippocampal graft-induced improvements on cognitive performance in aged rats. Soc Neurosci Abstr

    Google Scholar 

  • Gage FH, Dunnett SB, Stenevi U, Björklund A (1983) Aged rats: recovery of motor impairments by intrastriatal nigral grafts. Science 221:966–969

    PubMed  CAS  Google Scholar 

  • Gage FH, Björklund A, Stenevi U (1984) Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 225:533–536

    PubMed  CAS  Google Scholar 

  • Giacobini E (1982a) Cellular and molecular mechanisms of aging of the nervous system: toward a unified theory of neuronal aging. In: Giacobini E, Filogamo G, Giacobini G, Vernadakis A (eds) The aging brain: cellular and molecular mechanisms of aging in the nervous system. Raven, New York, pp 271–284 (Aging, vol 20)

    Google Scholar 

  • Giacobini E (1982b) Aging of autonomic synapses. In: Fedoroff S, Hertz L (eds) Advances in cellular neurobiology, vol 3. Academic, New York, pp 173–214

    Google Scholar 

  • Giacobini E (1983) A new hypothesis of aging of the cholinergic synapse. In: Samuels D, Algeri S, Gershon S, Grimm V, Toffano G (eds) Aging of the brain. Raven, New York, pp 197–210

    Google Scholar 

  • Giacobini E, Mussini I, Mattio T (1984) Aging of cholinergic synapses in the avian iris. In: Caciagli F, Giacobini E, Paoletti R (eds) Developmental neuroscience: physiological, pharmacological and clinical aspects. Elsevier, Amsterdam, pp 89–93

    Google Scholar 

  • Giacobini E, Mussini I, Mattio T (1986 a) Aging of cholinergic synapses: fiction or reality? In: Hanin I (ed) Dynamics of cholinergic function. Plenum, New York (in press)

    Google Scholar 

  • Giacobini E, Becker R, Elble R, Mattio T, McIlhany M (1986 b) Acetylcholine metabolism in brain: is it reflected by CSF changes? In: Fischer A, Hanin I, Lachman C (eds) Alzheimer and Parkinson diseases. Plenum, New York, pp 309–316

    Google Scholar 

  • Giacobini E, Becker R, Elble R, Mattio T, Mcllhancy M, Scarsella G (1986 c) Brain acetylcholine — a view from the cerebrospinal fluid. In: Dun N (ed) Neurobiology of acetylcholine symposium. Plenum, New York (in press)

    Google Scholar 

  • Gibson GE, Peterson C (1981) Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J Neurochem 34 (4):978–984

    Google Scholar 

  • Gibson GE, Peterson C, Jenden DJ (1981) Brain acetycholine synthesis declines with senescence. Science 213:674–676

    PubMed  CAS  Google Scholar 

  • Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernas SA, Nordberg A, Oreland L, Svennerholm L, Wiberg A, Winblad B (1983) Biochemical changes in dementia disorders of Alzheimer type (AC/SDAT). Neurobiol Aging 4:261–271

    PubMed  CAS  Google Scholar 

  • Gutmann E, Hanzliková V (1965) Age changes of motor end plates in muscle fibers of the rat. Gerontology 11:12–24

    Google Scholar 

  • Gutmann E, Hanzliková V (1966) The motor unit in old age. Nature 209:921

    PubMed  CAS  Google Scholar 

  • Gutmann E, Hanzliková V, Myskočil F (1971) Age changes in cross striated muscle of the rat. J Physiol (Lond) 219:331–343

    Google Scholar 

  • Haigler HJ, Cahill L, Crager M, Charles E (1985) Acetylcholine, aging and anatomy: differential effects in the hippocampus. Brain Res 362:157–160

    Google Scholar 

  • Hardy J, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P, Winblad B (1985) Transmitter deficits in Alzheimer’s disease. Neurochem Int 7:545–563

    PubMed  CAS  Google Scholar 

  • Harrell LE, Davis JN (1985) Cholinergic influences on hippocampal glucose metabolism. Neuroscience 15:359–369

    PubMed  CAS  Google Scholar 

  • Hefti F (1985) Nerve growth factor (NGF): a survival factor for cholinergic neurons of the rat septum (Abstr). OHOLO Biol Conference

    Google Scholar 

  • Hettinger MK, Gonzalez LP (1984) Effects of physostigmine on septo-hippocampal averaged evoked field potentials. Brain Res 323:148–153

    PubMed  CAS  Google Scholar 

  • Hyman BT, van Hoeven GW, Damasis AR, Branes CS (1984) Alzheimer’s disease: cell specific pathology isolates the hippocampal formation. Science 235:1168–1170

    Google Scholar 

  • Ishii T (1966) Distribution of Alzheimer’s neurofibrillary changes in the brain stem and the hypothalamus of senile dementia. Acta Neuropathol (Berl) 6:181–187

    CAS  Google Scholar 

  • Jarrard LE, Kant GJ, Meyerhoff JL, Levy A (1984) Behavioral and neurochemical effects of intraventricular AF64A administration in rats. Pharmacol Biochem Behav 21:273–280

    PubMed  CAS  Google Scholar 

  • Kelly SS, Robbins N (1983) Progression of age changes in synaptic transmission at mouse neuromuscular junctions. J Physiol (Lond) 343:375–383

    CAS  Google Scholar 

  • Kindel G, Karczmar AG (1981) Effect of single and repeated choline administration on brain choline, acetylcholine and acetylcholine turnover of CF-1 mice. Fed Proc 40:269

    Google Scholar 

  • Kindel G, Karczmar AG (1982) Effect of choline administration on brain choline and acetylcholine levels and acetylcholine turnover of young and old mice. Fed Proc 41:1323

    Google Scholar 

  • Kindel G, Karczmar AG (1985) Effect of choline administration on brain choline and acetylcholine levels and acetylcholine turnover of young and old mice. Fed Proc 41:1323

    Google Scholar 

  • Kirby ML, Diab IM, Mattio TG (1978) Development of adrenergic innervation of the iris and fluorescent ganglion cells in the choroid of the chick eye. Anat Rec 191 (3):311–319

    PubMed  CAS  Google Scholar 

  • Lippa AS, Bartus RT, Pelham RW (1979) Age-related alterations in hippocampal cholinergic functioning. Am Neurochem Soc Abstr 32

    Google Scholar 

  • Lippa AS, Critchett DJ, Ehlert F, Yamamura HI, Enna SJ, Bartus RT (1981) Age related alterations in neurotransmitter receptors: an electrophysiological and biochemical analysis. Neurobiol Aging 2:3–8

    PubMed  CAS  Google Scholar 

  • Lucchi ML, Bortolami R, Callegari E (1974) Fine structure of intrinsic eye muscles of birds: development and postnatal changes. J Submicrosc Cytol 6:205–218

    Google Scholar 

  • Makman MH, Ahn HS, Thal LJ, Sharpless NS, Dourkin B, Horowitz SG, Rosenfeld M (1979) Aging and monoamine receptors in brain. Fed Proc 38:1922–1926

    PubMed  CAS  Google Scholar 

  • Malmfors T (1965) Studies on adrenergic nerves: the use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta Physiol Scand 64 (Suppl 248)

    Google Scholar 

  • Mantione CR, Zigmond MJ, Fisher A, Hanin I (1983) Selective presynaptic cholinergic neurotoxicity following intrahippocampal AF64A injection in rats. J Neurochem 41:251–255

    PubMed  CAS  Google Scholar 

  • Marchi M, Giacobini E (1980) Development and aging of cholinergic synapses. II. Continuous growth of acetylcholine and choline levels in autonomic ganglia and iris of the chick. Dev Neurosci 3:38–48

    Google Scholar 

  • Marchi M, Giacobini E (1981) Aging of cholinergic synapses in the peripheral autonomic nervous system. In: Pepeu G, Ladinsky H (eds) Cholinergic mechanisms. Plenum, New York, pp 25–45

    Google Scholar 

  • Marchi M, Giacobini E, Hruschak K (1979) Development and aging of cholinergic synapses. I. Endogenous levels of acetylcholine and choline in developing autonomic ganglia and iris of the chick. Dev Neurosci 2:201–212

    PubMed  CAS  Google Scholar 

  • Marchi M, Hoffman DW, Giacobini E (1980a) Aging of the peripheral nervous system: age dependent changes in cholinergic synapses. In: Neural regulatory mechanisms during aging. Liss, New York, pp 215–219

    Google Scholar 

  • Marchi M, Hoffman DW, Giacobini E, Fredrickson T (1980b) Age dependent changes in choline uptake of the chick iris. Brain Res 195:423–431

    CAS  Google Scholar 

  • Marchi M, Hoffman DW, Giacobini E (1980c) The peripheral nervous system: a model system of aging. In: Amaducci L et al. (eds) Aging of the brain and dementia. Raven, New York, pp 159–166 (Aging, vol 13)

    Google Scholar 

  • Marchi M, Hoffman DW, Giacobini E, Fredrickson T (1980d) Development and aging of cholinergic synapses. IV. Acetylcholinesterase and choline acetyltransferase activities in autonomic ganglia and iris of the chick. Dev Neurosci 3:2335–2341

    Google Scholar 

  • Marchi M, Hoffman DW, Giacobini E, Volle R (1981 a) Development and aging of cholinergic synapses. VI. Mechanisms of acetylcholine biosynthesis in the chick iris. Dev Neurosci 4:442–450

    PubMed  CAS  Google Scholar 

  • Marchi M, Yurkewicz L, Giacobini E, Fredrickson T (1981 b) Development and aging of cholinergic synapses. V. Changes in nicotinic cholinergic receptor binding in ciliary ganglia and irises of the chicken. Dev Neurosci 4:258–266

    PubMed  CAS  Google Scholar 

  • Marchi M, Paudice P, Raiteri M (1983) Choline uptake, acetylcholine synthesis and regulation of acetylcholine release through autoreceptors in the aging rat cortex. In: Samuel D (ed) Aging of the brain. Raven, New York, pp 191–196 (Aging, vol 22)

    Google Scholar 

  • McGeer EG (1981) Neurotransmitter system in aging and senile dementia. Prog Neuro-psychopharmacol 5:435–445

    CAS  Google Scholar 

  • McGeer EG, McGeer PL (1975) Age changes in the human for some enzymes associated with metabolism of catecholamines, GABA and acetylcholine. Adv Behav Biol 16:287–327

    CAS  Google Scholar 

  • McGeer EG, McGeer PL (1976) Neurotransmitter metabolism in the aging brain. Neurobiol Aging 3:389–403

    CAS  Google Scholar 

  • McGeer EG, Fibiger HC, McGeer PL, Wickson V (1971) Aging and brain enzymes. Exp Gerontol 6:391–396

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG, Fibiger HC (1973) Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea. Neurology (Minneap) 23 (1):912–917

    CAS  Google Scholar 

  • McGeer PL, McGeer EG, Peng JH, Kimura H, Pearson T, Suzuki J, Dolman C (1983) Biochemical and immunohistochemical evaluation of ChAc in aging (Abstr). J Neurochem 41:S20D

    Google Scholar 

  • Morin AM, Wasterlain CG (1980) Aging and rat brain muscarinic receptors as measured by quinuclidinyl benzilate binding. Neurochem Res 5 (3):301–308

    PubMed  CAS  Google Scholar 

  • Moyer EK, Kaliszewski BF (1958) The number of nerve fibers in motor spinal nerve roots of young, mature and aged rats. Anat Rec 131:681–699

    Google Scholar 

  • Murray CL, Fibiger HC (1985) Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physotstigmine. Neuroscience 14 (4):1025–1032

    PubMed  CAS  Google Scholar 

  • Mussini I, Giacobini E (1985) Changes with age in neuromuscular junction. In: Carraro U, Angelini C (eds) Proceedings of cell biology and clinical management in functional electro stimulation of neurones and muscles. Cleup, Padova, pp 1–4

    Google Scholar 

  • Nagai T, McGeer PL, Peng JH, McGeer EG, Dolman CE (1983) Choline acetyltransferase immunohistochemistry in brains of Alzheimer’s patients and controls. Neurosci Lett 36:195–199

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Nakajima S, Obata K, Carlson CG, Yamaguchi K (1985) Dissociated cell culture of cholinergic neurons from nucleus basalis of Meynert and other basal forebrain nuclei. Proc Natl Acad Sci USA 82:6325–6329

    PubMed  CAS  Google Scholar 

  • Nordberg A, Winblad B (1985) Brain nicotinic and muscarinic receptors in normal aging and dementia. In: Hanin I, Fisher A (eds) Basic and therapeutic strategies in Alzheimer’s and other age-related neuropsychiatric disorders. Plenum, New York, pp 95–108

    Google Scholar 

  • Nordberg A, Adolfsson R, Aquilonius SM, Marklund S, Oreland L, Winblad B (1980) Brain enzymes and acetylcholine receptors in dementia of Alzheimer type and chronic alcohol abuse. In: Amaducci C, Davison AN, Antuono P (eds) Aging of the brain and dementia. Raven, New York, pp 169–172 (Aging, vol 13)

    Google Scholar 

  • Nordberg A, Adolfson R, Marcusson J, Winblad B (1982) Cholinergic receptors in the hippocampus in normal aging and dementia of Alzheimer type. In: Giacobini E (ed) The aging brain: cellular and molecular mechanisms. Raven, New York, pp 231–245

    Google Scholar 

  • Nordberg A, Larsson C, Adolfsson R, Alafuzoff I, Winblad B (1983) Muscarinic receptor compensation in hippocampus of Alzheimer patients. J Neural Transm 56:13

    PubMed  CAS  Google Scholar 

  • Pedigo NW Jr, Minor LD, Krumrei TN (1984) Cholinergic drug effects and brain muscarinic receptor binding in aged rats. Neurobiol Aging 5:227–233

    PubMed  CAS  Google Scholar 

  • Pepeu G (1984) Animal models for the study of senile dementia of Alzheimer type. In: Knook DL, Calderini G, Amaducci L (eds) Aging of the brain and senile dementia: the inventory of EEC potentialities. Eurage, pp 15–22

    Google Scholar 

  • Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. J Neurol 34:247–265

    CAS  Google Scholar 

  • Perry RH, Candy JM, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1982) Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci Lett 33:311–315

    PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB, Griffin JW (1980) Effects of aging on nerve sprouting and regeneration. Exp Neurol 70:65–82

    PubMed  CAS  Google Scholar 

  • Peterson C, Gibson GE (1984) Regional acetylcholine metabolism in senescent mice during hypoxia. Soc Neurosci Abstr 316

    Google Scholar 

  • Rebeiz JJ, Moore MJ, Holden EM, Adams RD (1972) Variations in muscle status with age and systemic diseases. Acta Neuropathol (Berl) 22:127–144

    CAS  Google Scholar 

  • Rockstein M, Brandt K (1962) Muscle enzyme activity and changes in weight in ageing with rats. Nature 196:142–143

    PubMed  CAS  Google Scholar 

  • Rosenheimer JL, Smith DO (1985 a) Differential changes in the end-plate architecture of functionally diverse muscles during aging. J Neurophysiol 53:1567–1581

    PubMed  CAS  Google Scholar 

  • Rosenheimer JL, Smith DO (1985 b) Electrophysiological measurement of glucose uptake into motor nerve terminals of mature adult and aged rats. Brain Res 330:373–377

    PubMed  CAS  Google Scholar 

  • Rossor M, Fahrenkrug J, Emson P, Mountjoy C, Iversen L, Roth M (1980) Reduced cortical choline acetyltransferase in senile dementia of Alzheimer type is not accompanied by changes in vasoactive intestinal peptide. Brain Res 201:249–253

    PubMed  CAS  Google Scholar 

  • Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL (1982 a) A postmortem study of the cholinergic and GABA systems in senile dementia. Brain 105:313–330

    PubMed  CAS  Google Scholar 

  • Rossor MN, Svendsen C, Hunt SP, Mountjoy CQ, Roth M, Iversen LL (1982b) The substantia innominata in Alzheimer’s disease: an histochemical and biochemical study of cholinergic marker enzymes. Neurosci Lett 28:217–222

    PubMed  CAS  Google Scholar 

  • Rylett RT, Ball MJ, Colhoun EH (1983) Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 2389:169–175

    Google Scholar 

  • Saito M, Kindel G, Karczmar AG, Rosenberg A (1985) Metabolism of choline in brain of the adged CBF-1 mouse. J Neurosci Res (in press)

    Google Scholar 

  • Sastry BVR, Janson VE, Jaiswal N, Tayeb OS (1983) Changes in enzymes of the cholinergic system and acetylcholine release in the cerebra of aging male Fischer rats. Pharmacology 26:61–72

    PubMed  CAS  Google Scholar 

  • Schonfeld AR, Katzman R (1983) In vivo cholinotrophic activities. In: Katzman R (ed) Banbury report 15: biological aspects of Alzheimer’s disease. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schultzberg M, Hökfelt T, Olson L, Alund M, Nilsson G, Terenius L, Elde R, Goldstein M, Said S (1980) Substance P, VIP, enkephalin and somatostatin immunoreactive neurons in intestinal tissue transplanted to the anterior eye chamber. J Auton Nerv Syst 1:293–303

    Google Scholar 

  • Segal M (1982) Changes in neurotransmitter actions in the aged rat hippocampus. Neurobiol Aging 3:121–124

    PubMed  CAS  Google Scholar 

  • Segal M, Milgram NW, Feinsod Y, Rotengerg M (1985) Brain transplantation: an alternative? (Abstr) OHOLOL Biol Conf

    Google Scholar 

  • Seiger A, Dahl D, Ayer-LeLievre C, Björklund H (1984) Appearance and distribution of neurofilament immunoreactivity in iris nerves. J Comp Neurol 223:457–470

    PubMed  CAS  Google Scholar 

  • Seiger A, Selin U-B, Kessler J, Black I, Ayer-LeLievre C (1985) Substance P-containing sensory nerves in the rat iris: normal distribution, ontogeny and innervation of intraocular iris grafts. Neuroscience 15:519–528

    PubMed  CAS  Google Scholar 

  • Sherman KA, Kuster JE, Dean RL, Bartus RT, Friedman E (1981) Presynaptic cholinergic mechanisms in brain of aged rats with memory impairments. Neurobiol Aging 2:99–104

    PubMed  CAS  Google Scholar 

  • Sims NR, Marek KL, Bowen DM, Davison AN (1982) Production of [14C] acetylcholine and [14C]carbon dioxide from [U14C]glucose in tissue prisms from aging rat brain. J Neurochem 38:488–492

    PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509

    PubMed  CAS  Google Scholar 

  • Smith DO (1982 a) Physiological and structural changes at the neuromuscular junction during aging. In: Giacobini E, Filogamo G, Giacobini G, Vernadakis A (eds) The aging brain: cellular and molecular mechanisms of aging in the nervous system. Raven, New York, pp 123–138 (Aging, vol 20)

    Google Scholar 

  • Smith DO (1982b) Restricted diffusion of extracellular potassium at the neuromuscular junction of aged rats. Brain Res 239:668–673

    PubMed  CAS  Google Scholar 

  • Smith DO (1984) Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats. J Physiol (Lond) 347:161–176

    CAS  Google Scholar 

  • Smith DO, Rosenheimer JL (1982) Decreased sprouting and degeneration of nerve terminals of active muscles in aged rats. J Neurophysiol 48(1):100–109

    PubMed  CAS  Google Scholar 

  • Smith DO, Rosenheimer JL (1984) Factors governing speed of action potential conduction and neuromuscular transmission in aged rats. Exp Neurol 83:358–366

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Pearson RCA, Eckenstein F, Cuello AC, Powell TPS (1983) Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res 289:370–374

    PubMed  CAS  Google Scholar 

  • Spencer CJ, Schwarz RD, Pugsley TA (1985) Presynaptic control of 3H-acetylcholine (3H-ACh) release from cortical slices of young and aged Fisher 344 rats. Soc Neurosci Abstr 1097:(317.1)

    Google Scholar 

  • Springer JE, Loy R, Tayrien M (1985) Age-related changes in cholinergic enzymes and muscarinic binding sites in rate brain. Soc Neurosci Abstr 895:251.14

    Google Scholar 

  • Strong R, Hicks P, Hsu L, Bartus RT, Enna SJ (1980) Age-related alterations in the rodent brain cholinergic system and behavior. Neurobiol Aging 1:59

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Swanson LW, Koob GF (1983) Electrolytic lesions of the substantia innominata and lateral preoptic area attenuate the ‘supersensitive’ locomotor response to apomorphine resulting from denervation of the nucleus accumbens. Brain Res 306:141–148

    Google Scholar 

  • Syrový I, Gutmann E (1970) Changes in speed of contraction and ATP-ase activity in striated muscle during old age. Exp Gerontol 5:31–35

    PubMed  Google Scholar 

  • Thompson JM, Makino C, Whitaker J, Joseph JA (1983) Aging and apomorphine modulation of acetylcholine release from rat striatal slices. J Neurochem 41:S21A

    Google Scholar 

  • Thompson JM, Makino CL, Whitaker JR, Joseph JA (1984) Age-related decrease in apomorphine modulation of acetylcholine release from rat striatal slices. Brain Res 299:169–173

    PubMed  CAS  Google Scholar 

  • Tuček S, Gutmann E (1973) Choline acetyltransferase activity in muscles of old rats. Exp Neurol 38:349–360

    PubMed  Google Scholar 

  • Tuffery AR (1971) Growth and regeneration of motor end plates in normal cat and hind limb muscles. J Anat 110:221

    PubMed  CAS  Google Scholar 

  • Van den Bosch de Aguilar PH, Janssens de Varebeke PH, de Paermentier F (1985) Implantation of Alzheimer’s disease brain tissue in young rat cortex: parenchymal and vascular reactions (Abstr). OHOLO Biol Conf

    Google Scholar 

  • Vernadakis A (1973) Changes in nucleic acid content and butyrylcholinesterase activity in CNS structures durin the life-span of the chicken. J Gerontol 28:281–286

    PubMed  CAS  Google Scholar 

  • Vernadakis A (1984) The aging brain. In: Geokas MC (ed) Clinics in geriatric medicine. Saunders, New York

    Google Scholar 

  • Vyskočil F, Gutmann E (1969) Spontaneous transmitter release from nerve endings. Experientia 25:945–946

    PubMed  Google Scholar 

  • Waller SB, London ED (1983) Age-differences in choline acetyltransferase activities and muscarinic receptor binding in brain regions of C57BL/6J mice. Exp Gerontol 18:419–425

    PubMed  CAS  Google Scholar 

  • Waller SB, Donald KI, Reynolds MA, London ED (1983) Age and strain comparisons of neurotransmitter synthetic enzyme activities in the mouse. J Neurochem 41:1421–1427

    PubMed  CAS  Google Scholar 

  • Walsh TJ, Tilson HA, DeHaven DL, Mailman RB, Fisher A, Hanin I (1984) AF64A, a cholinergic neurotoxin, selectively depletes ACh in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat. Brain Res 321:91–102

    PubMed  CAS  Google Scholar 

  • Weiler MH, Smith DO (1985) Metabolism of acetylcholine at the neuromuscular junction of mature adult and aged rats. Soc Neurosci Abstr 15:732

    Google Scholar 

  • Wenk GL, Olton DS (1984) Recovery of neocortical choline acetyltransferase activity following ibotenic acid injection into the nucleus basalis of Meynert in rats. Brain Res 293:184–186

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ (1985) Alterations in cholinergic neurons and cholinergic neurotransmitter receptors in Alzheimer’s disease. Biol Psych Mtg, p 115

    Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Martino AM, Antuono PG, Coyle JT, Price DL, Keilart KJ (1985) Reduction in nicotinic cholinergic receptors measured using (3H) acetylcholine in Alzheimer’s disease. Soc Neurosci Abstr 11:134

    Google Scholar 

  • Wood PL, Etienne P, Lal S, Nair NPV, Finlayson MH, Gauthier S, Palo J, Haltia M, Paetou A, Bird ED (1983) A postmortem comparison of the cortical cholinergic system in Alzheimer’s disease and Pick’s disease. J Neurol Sci 62:201–207

    Google Scholar 

  • Yurkewicz L, Marchi M, Lauder JM, Giacobini E (1981) Development and aging of noradrenergic cell bodies and axon terminals in the chicken. J Neurosci Res 6:621–641

    PubMed  CAS  Google Scholar 

  • Zenker W, Krammer E (1967) Untersuchungen über Feinstruktur und Innervation der inneren Augenmuskulatur des Huhnes. Z Zellforsch Mikrosk Anat 83:147–168

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giacobini, E. (1988). The Cholinergic System in Aging. In: Whittaker, V.P. (eds) The Cholinergic Synapse. Handbook of Experimental Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73220-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73220-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73222-5

  • Online ISBN: 978-3-642-73220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics