Skip to main content

The Heat Shock Response in Plants: Short-Term Heat Treatment Regimes and Thermotolerance

  • Conference paper
Environmental Stress in Plants

Part of the book series: NATO ASI Series ((ASIG,volume 19))

Abstract

The heat shock (HS) response is one of the most highly conserved biological systems known. It appears to be universal, having been observed in organisms ranging from eubacteria to archebacteria, from lower eukaryotes to plants and man. Almost every cell and tissue type including cultured cells of plants and animals undergo the HS response. The HS response is characterized by a number of interesting regulatory phenomena. Transcription of HS genes is rapidly activated and HS mRNAs accumulate to high levels. The initial transcriptional activation slows, and cessation of HS gene transcription occurs after about two hours of continuous HS. This shutdown of HS mRNA transcription under HS conditions has been referred to as self-regulation or autoregulation (DiDomenico et al., 1982; Key et al., 1983). There is also a rapid slowing of normal mRNA translation (Ashburner and Bonner, 1979; Key et al., 1981); the normal mRNAs persist during HS from near normal levels to much reduced levels depending upon the specific mRNA (Mirault et al., 1978; Key et al., 1985). Various aspects of the HS response have been recently reviewed for eukaryotes (Nover et al., 1984; Craig, 1985; Lindquist, 1986), for prokaryotes (Neidhardt et al., 1984) and for plants (Nagaoet al., 1986; Nagao and Key, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17:241–254

    Article  PubMed  CAS  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Chen H-H, Shen Z-Y, Li PH (1982) Adaptability of crop plants to high temperature stress. Crop Sci 22:719–725

    Article  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Vaughn V, Walter WA, Neidhardt FC, Gross CA (1987) Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev 1:419–432

    Article  PubMed  CAS  Google Scholar 

  • Grossman AD, Straus DB, Walter WA, Gross CA (1987)32synthesis can regulate the synthesis of heat shock proteins inEscherichia coliGenes Dev 1:179–184

    Google Scholar 

  • Havaux M, Canaani O, Malkin S (1987) Rapid screening for heat tolerance in Phaseolus species using the photoacoustic technique. Plant Sci 48:143–149

    Article  Google Scholar 

  • Kavaler L (1981) A Matter of Degree — Heat, Life and Death. Harper and Row, New York, p 120

    Google Scholar 

  • Key JL, Lin C-Y, Ceglarz, Schoffl E (1982) The heat-shock response in plants: physiological considerations. In: Schlesinger MJ, Ashburner M, Tissieres A (eds) Heat Shock from Bacteria to Man. Cold Spring Harbor Laboratory, p 329–336

    Google Scholar 

  • Key JL, Czarnecka E, Lin C-Y, Kimpel J, Mothershed C, Schoffl F (1983) A comparative analysis of the heat shock response in crop plants. In: Randall DD, Blevins DG, Larson RL, Rapp BJ (eds) Current Topics in Plant Biochemistry and Physiology, 2. University of Missouri Columbia, p 107–118

    Google Scholar 

  • Key JL, Kimpel JA, Lin C-Y, Nagao RT, Vierling E, Czarnecka E, Gurley WB, Roberts JK, Mansfield MA, Edelman E (1985) The heat shock response in soybean. In: Key JL, Kosuge T (eds) Cellular and Molecular Biology of Plant Stress. Alan R Liss Inc, New York, p 161–179

    Google Scholar 

  • Key JL, Nagao RT, Czarnecka E, Gurley WB (1987) Heat stress: expression and structure of heat shock protein genes. In: von Wettstein D, Chua NYH (eds) NATO Advanced Study Inst Plant Molecular Biology, Copenhagen

    Google Scholar 

  • Kimpel JA, Key JL (1985) Presence of heat shock mRNAs in field grown soybeans. Plant Physiol 79:672–678

    Article  PubMed  CAS  Google Scholar 

  • Lin C-Y, Roberts JK, Key JL (1984) Acquisition of thermotolerance in soybean seedlings. Plant Physiol 74:152–160

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, DiDomenico B (1985) Coordinate and noncoordinate gene expression during heat shock: A model for regulation. In: Atkinson BG, Waiden DB (eds) Changes in Eukaryotic Gene Expression in Response to Environmental Stress. Academic Press Inc, New York, p 72–89

    Google Scholar 

  • Martineau JR, Specht JE, Williams JH, Sullivan CY (1979a) Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci 19:75–78

    Article  Google Scholar 

  • Martineau JR, Williams JH, Spect JE (1979b) Temperature tolerance in soybeans. II. Evaluation of segregating populations for membrane thermostability. Crop Sci 19:79–81

    Article  Google Scholar 

  • Mirault ME, Goldschmidt-Clermont M, Moran L, Arrigo AP, Tissieres A (1978) The effect of heat shock on gene expression inDrosophila melanogasterCold Spring Harbor Symp Quant Biol 42:819–827

    PubMed  CAS  Google Scholar 

  • Nagao RT, Key JL (1988) Heat shock protein genes of plants. In: Schell J, Vasil IK (eds) Molecular Biology of Plant Nuclear Genes. 6 Academic Press Inc, New York

    Google Scholar 

  • Nagao RT, Kimpel JA, Vierling E, Key JL (1986) The heat shock response: a comparative analysis. In: Miflin BJ (ed) Oxford Surveys of Plant Molecular and Cell Biology, p 384–438

    Google Scholar 

  • Neidhardt FC, VanBogelen RA, Vaughn V (1984) The genetics and regulation of heat-shock proteins. Ann Rev Genet 18:295–329

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Hellmund D, Neumann D, Scharf K-D, Serfling E (1984) The heat shock response of eukaryotic cells. Biol Zbl 103:357–435

    CAS  Google Scholar 

  • Schoffl F, Key JL (1982) An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J Molec Appl Genet 1:301–314

    CAS  Google Scholar 

  • Smillie RM, Hetherington SE (1983) Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescencein vivoPlant Physiol 72:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • TeKrony DM, Egli DB, White GM (1987) Seed production and technology. In: Wilcox JR (ed) Soybeans: Improvement, Production and Uses. American Society of Agronomy Inc., Crop Science Society of America Inc, Soil Science Society of America Inc, Wisconsin, p 295–353

    Google Scholar 

  • Tilly K, Erickson J, Sharma S, Georgopoulos C (1986) Heat shock regulatory gene rpoH mRNA level increases after heat shock inEscherichia coliJ Bacteriol 168:1155–1158

    PubMed  CAS  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response ofEscherichia coliCell 34:641–646

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen RA, Acton MA, Neidhardt FC (1987) Induction of the heat shock regulation does not produce thermotolerance inEscherichia coliGenes Dev 1:525–531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagao, R.T. (1989). The Heat Shock Response in Plants: Short-Term Heat Treatment Regimes and Thermotolerance. In: Cherry, J.H. (eds) Environmental Stress in Plants. NATO ASI Series, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73163-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73163-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73165-5

  • Online ISBN: 978-3-642-73163-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics