Skip to main content

The Possible Role of Various Membrane Transport Mechanisms in Adaptation to Salinity

  • Conference paper
Environmental Stress in Plants

Part of the book series: NATO ASI Series ((ASIG,volume 19))

Abstract

Peter Mitchell’s chemiosmotic hypothesis (Mitchell, 1986) has now dominated our thinking about membrane transport processes for nearly two decades. It envisages a relatively small number of primary energy transducers in the cell membranes, the “primary pumps”, which generate transmembrane ion gradients by transferring specific ions energetically uphill. These ions are the “working” ions — their return flux, downhill, can serve as the direct source of energy for the transmembrane flux of numerous other metabolites and ions if there are “porter” molecules in the membrane which couple the two fluxes, those of the “driving” and “driven” solute respectively (Fig. 1). These two fluxes may be in the same (symport) or opposing (antiport) direction, and in addition there may be “uniport” of ions, that is electrophoretic flux through specific channels, driven by the membrane potential (Δψ) generated by the electrogenic primary pump. The principal primary pump in the animal cell is the Na+K+ATPase which ejects Na+ from the cell and builds up an inwardly directed Na+ gradient. Its functional counterpart in the plant cell is the proton pump which is responsible for the electrogenic extrusion of protons, thus generating the “protonmotive force”, or pmf (ΔpH +Δψ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blumwald E, Poole RJ (1985) Na+/H+ antiporter in isolated tonoplast vesicles from storage tissues of Beta vulgaris. Plant Physiol 78:163–167

    Article  PubMed  CAS  Google Scholar 

  • Braun Y, Hassidim M, Lerner HR, Reinhold L (1986) Studies on H+- translocating ATPases in plants of varying resistance to salinity. I. Salinity during growth modulates the proton pump in the halophyte Atriplex nummularia. Plant Physiol 81:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Croughan TP, Stravasek SJ, Rains DW (1978) Selection of NaCl tolerant line of cultured Alfalfa cells. Crop Sci 18:959–963

    Article  CAS  Google Scholar 

  • Hassidim M, Braun Y, Lerner HR, Reinhold L (1986) Studies on H+- translocating ATPases in plants of varying resistance to salinity. II. K strongly promotes development of membrane potential in vesicles from cotton roots. Plant Physiol 81:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397

    PubMed  CAS  Google Scholar 

  • Mandala S, Taiz L (1985) Partial purification of a tonoplast ATPase from corn coleoptiles. Plant Physiol 78:327–333

    Article  PubMed  CAS  Google Scholar 

  • Maloney P, Wilson TH (1985) The evolution of ion pumps. Bioscience 35:43–48

    Article  CAS  Google Scholar 

  • Mitchell P (1986) Chemiosmotic Coupling and Energy Transduction. Glynn Research Ltd, Bodmin, England

    Google Scholar 

  • O’Neil S, Spanswick RM (1984) Characterization of native and reconstituted plasma membrane H+ATPase from the plasma membrane of Beta vulgaris. J Membrane Biol 79:245–256

    Article  Google Scholar 

  • Padan E, Shuldiner S (1987) Intracellular pH and membrane potential as regulators in the prokaryotic cell. J Membrane Biol 95:189–198

    Article  CAS  Google Scholar 

  • Reinhold L, Seiden A, Volokita M (1984) Is modulation of the rate of proton pumping a key event in osmoregulation? Plant Physiol 75:846–849

    Article  PubMed  CAS  Google Scholar 

  • Rosen BP (1986) Recent advances in bacterial ion transport. Ann Rev Microbiol 40:263–286

    Article  CAS  Google Scholar 

  • Scherer GFE, Martiny-Baron G (1985) K+/H+ exchange transport in plant membrane vesicles is evidence for K+ transport. Plant Sci 41:169–173

    Article  Google Scholar 

  • Skulachev VP (1978) Membrane-linked energy buffering as the biological function of Na+/K+ gradient. FEBS Lett 87:171–179

    Article  PubMed  CAS  Google Scholar 

  • Sze H (1983) H+-pumping ATPase in membrane vesicles of tobacco callus: sensitivity to vanadate and K+. Biochim Biophys Acta 732:586–594

    Article  CAS  Google Scholar 

  • Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Ann Rev Plant Physiol 36:175–208

    Article  CAS  Google Scholar 

  • Taiz L (1986) Are biosynthetic reactions in plant cells thermodynamically coupled to glycolysis and the tonoplast protonmotive force. J Theor Biol 123:231–238

    Article  CAS  Google Scholar 

  • Watad AA, Pesci P-A, Reinhold L, Lerner HR (1986) Proton fluxes as a response to external salinity in wild type and NaCl-adapted Nicotiana cell lines. Plant Physiol 81:454–459

    Article  PubMed  CAS  Google Scholar 

  • Watad AA, Reinhold L, Lerner HR (1983) Comparison between a stable NaCl-selected Nicotiana cell line and the wild type. Plant Physiol 73:624–629

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reinhold, L., Braun, Y., Hassidim, M., Lerner, H.R. (1989). The Possible Role of Various Membrane Transport Mechanisms in Adaptation to Salinity. In: Cherry, J.H. (eds) Environmental Stress in Plants. NATO ASI Series, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73163-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73163-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73165-5

  • Online ISBN: 978-3-642-73163-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics