Skip to main content

Stimulation of In Vitro H+ Transport in Zucchini Microsomes by the Ether Lipid Platelet Activating Factor and a Soluble Protein

  • Conference paper
Plant Hormone Receptors

Part of the book series: NATO ASI Series ((ASIH,volume 10))

Summary

Platelet activating factor (=PAF) stimulates H+ transport in microsomes from zucchini hypocotyl (1) and ATP hydrolysis. The apparent membrane permeability for protons in membrane vesicles is not changed by PAF and in ATP hydrolysis rather vmax than the Km is changed by PAF. PAF stimulation of H+ transport is dependent on the presence of a protein factor which can be removed from the membranes. The properties of PAF-dependent protein factor in DEAE-Sephacel chromatography are very similar to a protein kinase. PAF stimulation of ATP hydrolysis and H+ transport is found in tonoplast and plasma membranes. A possible role for the PAF-dependent factor analogous to animal protein kinase C in plant hormone action is postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Scherer, G.F.E. (1985) Biochem. Biophys. Res. Comm. 133, 1160–1167

    Article  PubMed  CAS  Google Scholar 

  2. Demopoulos, C.A., Pinckard, R.N., Hanahan, D.J. (1979) J. Biol. Chem. 254, 9355–9358

    PubMed  CAS  Google Scholar 

  3. Vargaftig, B.B., Benveniste, J. (1983) Trends in Pharm. Sci. 4, 341–343

    Article  CAS  Google Scholar 

  4. Conrad, G.W., Rink, T.J. (1986) J. Cell Biol. 103, 439–450

    Article  PubMed  CAS  Google Scholar 

  5. Fisher, R.A., Shukla, S.D., Debuysere, M.S., Hanahan, D.J., Olson, M.S. (1984) J. Biol. Chem. 259, 8685–8688

    PubMed  CAS  Google Scholar 

  6. Sugatani, J., Hanahan, D.J. (1986) Arch. Biochem. Biophys. 246, 855–864

    Article  PubMed  CAS  Google Scholar 

  7. Scherer, G.F.E., Fischer, G. (1985) Protoplasma 129, 109–119

    Article  CAS  Google Scholar 

  8. Scherer, G.F.E. (1981) Planta, 151, 434–438

    Article  CAS  Google Scholar 

  9. Scherer, G.F.E., Martiny-Baron, G. (1985) Plant Science 41, 161–168

    Article  CAS  Google Scholar 

  10. Buckhout, T.J. (1982) Planta 159, 84–90

    Article  Google Scholar 

  11. Takai et al. (1979) J. Biol. Chem. 254, 3692–3695

    PubMed  CAS  Google Scholar 

  12. Schäfer, B., et al. (1985) FEBS Lett. 187, 25–28

    Article  Google Scholar 

  13. Scherer, G.F.E. (1984) Planta 160, 348–356

    Article  CAS  Google Scholar 

  14. Nishizuka, Y. (1984) Trends in Biochem. Sci. 9, 163–166

    Article  Google Scholar 

  15. Hertel, R. (1979) Plant Organelles. Methodological Surveys (B) Biochemistry vol. 9 pp. 173–183. E. Reid, ed. Halsted Press, New York Chichester Toronto

    Google Scholar 

  16. Kutschera, U., Schopfer, P. (1985) Planta 163, 483–493

    Article  CAS  Google Scholar 

  17. Kutschera, U., Schopfer, P. (1985) Planta 163, 494–499

    Article  CAS  Google Scholar 

  18. Buckhout, T.J. (1984) Plant Physiol. 76, 962–967

    Article  PubMed  CAS  Google Scholar 

  19. Buckhout, T.J., Young, K.A., Low, P.S., Morre, D.J. (1981) Plant Physiol. 68, 512–515

    Article  PubMed  CAS  Google Scholar 

  20. Ray, P.M., Dohrmann, U., Hertel, R. (1977) Plant Physiol. 59, 537–546

    Google Scholar 

  21. Muallem, S., Schoeffield, M., Pandol, S., Sachs, G. (1985) Proc. Natl. Acad. Sci. USA 82, 4433–4437

    Article  PubMed  CAS  Google Scholar 

  22. Boss, W.F., Massel, M.O. (1985) Biochem. Biophys. Res. Comm. 132, 1018–1023

    Article  PubMed  CAS  Google Scholar 

  23. Strasser, H., Hoffmann, C., Grisebach, H., Matern, U., (1986) Z. Naturforsch. 41 c, 717–724

    Google Scholar 

  24. Yoshida, S. (1979) Plant Physiol, 64, 241–246

    Article  PubMed  CAS  Google Scholar 

  25. Scherer, G.F.E., Morre, D.J. (1978) Plant Physiol. 62, 933–937

    Article  PubMed  CAS  Google Scholar 

  26. Sze, H. (1985) Annu. Rev. Plant Physiol. 36, 175–208

    Article  CAS  Google Scholar 

  27. Zbell, B. (1983) Ph. D. thesis, Berlin, Free University

    Google Scholar 

  28. Hertel, R. (1983) Z. Pflanzenphysiol. 112, 53–67

    CAS  Google Scholar 

  29. De la Fuente, R.K. (1984) Plant Physiol. 76, 342–346

    Article  Google Scholar 

  30. Gabathuler, R., Cleland, R.E. (1985) Plant Physiol. 79, 1080–1085

    Article  PubMed  CAS  Google Scholar 

  31. Scherer, G.F.E. (1984) Planta 161, 394–397

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scherer, G.F.E., Martiny-Baron, G. (1987). Stimulation of In Vitro H+ Transport in Zucchini Microsomes by the Ether Lipid Platelet Activating Factor and a Soluble Protein. In: Klämbt, D. (eds) Plant Hormone Receptors. NATO ASI Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72779-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72779-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72781-8

  • Online ISBN: 978-3-642-72779-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics