Skip to main content

Cellular mechanisms controlling EDRF/NO formation in endothelial cells

  • Conference paper
Endothelial Mechanisms of Vasomotor Control

Summary

We investigated the molecular mechanisms whereby Ca2+ enters the endothelial cytosol and regulates endothelial nitric oxide synthesis L-arginine-dependent nitric oxide synthesis by isolated endothelial cytosol as quantified by activation of a purified soluble guanylate cyclase was concentration-dependently enhanced by free Ca2+ (EC50 0.3 μM). The Ca2+-dependent activation was inhibited by the calmodulin antagonists mastoparan, melittin, and calcineurin (IC50 450, 350, and 60 nM, respectively) in a calmodulin-reversible manner. After removal of endogenous calmodulin the Ca2+-dependency of endothelial NO synthase was lost, but could be reconstituted with exogenous calmodulin. The results indicate that Ca2+-calmodulin directly activates the endothelial nitric oxide synthase, thereby transducing agonist-induced increases in intracellular free Ca2+ concentration to nitric oxide formation from L-arginine, K+-induced depolarization of the endothelial cells markedly inhibited the sustained, but not initial phase of the intracellular Ca2+ response to bradykinin, indicating that K+-induced depolarization depresses the transmembrane Ca2+ influx. On the contrary, the K+ channel activator Hoe 234 which elicits hyperpolarization of the endothelial cell membrane, augmented the sustained phase of the agonist-induced intracellular Ca2+ signal, but not the resting intracellular Ca2+ level. The effects of K+ and Hoe 234 on the agonist-induced Ca2+-response were reflected by corresponding changes in agonist-induced EDRF/NO release. From these data, we suggest that the endothelial membrane potential may play an important role for the extent of agonist-induced Ca2+ influx and, thereby, the endothelial EDRF/NO synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams DJ, Barakeh J, Laskey R, van Bremen C (1989) Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 3:2389–2400

    PubMed  CAS  Google Scholar 

  2. Amber IJ, Hibbs JB, Taintor RR, Vavrin Z (1988) Cytokines induce an l-arginine-dependent effector system in nonmacrophage cells. J Leukocyte Biol 44:58–65

    PubMed  CAS  Google Scholar 

  3. Ando J, Komatsuda T, Kamiya A (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Develop Biol 24:871–877

    Article  CAS  Google Scholar 

  4. Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30:349–380

    Article  PubMed  CAS  Google Scholar 

  5. Busse R, Fichtner H, Lückhoff A, Kohlhardt M (1988) Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells. Am J Physiol 255:H965–H969

    PubMed  CAS  Google Scholar 

  6. Cannell MB, Sage SO (1989) Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol (London) 419:555–568

    CAS  Google Scholar 

  7. Colden-Stanfield M, Schilling WP, Ritchie AK, Eskin SG, Navarro LT, Kunze DL (1987) Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res 61:632–640

    PubMed  CAS  Google Scholar 

  8. Danthuluri NR, Cybusky MI, Brock TA (1988) ACh-induced calcium transients in primary cultures of rabbit aortic endothelial cells. Am J Physiol 255:H1549–H1553

    PubMed  CAS  Google Scholar 

  9. Daut J, Dischner A, Mehrke G (1989) Bradykinin induces a transient hyperpolarization of cultured guinea-pig coronary endothelial cells. J Physiol (London) 410:48P

    Google Scholar 

  10. Förstermann U, Mülsch A, Böhme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58:531–538

    PubMed  Google Scholar 

  11. Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53:557–573

    PubMed  CAS  Google Scholar 

  12. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  13. Hamilton TC, Weston AH (1989) Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle. Gen Pharmacol 20:1–9

    Article  PubMed  CAS  Google Scholar 

  14. Hauschildt S, Bassenge E, Bessler W, Busse R, Mülsch A (1990) l-arginine-dependent nitric oxide formation and nitrite release in bone marrow-derived macrophages stimulated with bacterial lipopeptide and lipopolysaccharide. Immunol 70:332–337

    CAS  Google Scholar 

  15. Hauschildt S, Lückhoff A, Mülsch A, Kohler J, Bessler W, Busse R (1990) Induction and activity of NO synthetase in bone marrow-derived macrophage are independent of calcium. Biochem J 270:351–356

    PubMed  CAS  Google Scholar 

  16. Hodgkin AL (1951) The ionic basis of electrical activity in nerve and muscle. Biol Rev 26:339–409

    Article  CAS  Google Scholar 

  17. Iyengar R, Stuehr DJ, Mariette MA (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84:6369–6373

    Article  PubMed  CAS  Google Scholar 

  18. Knowles RG, Palacios M, Palmer RMJ, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system — transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86:5159–5162

    Article  PubMed  CAS  Google Scholar 

  19. Lückhoff A, Busse R (1986) Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J Cell Physiol 126:414–420

    Article  PubMed  Google Scholar 

  20. Lückhoff A, Busse R, Winter I, Bassenge E (1987) Characterization of vascular relaxant factor released from cultured endothelial cells. Hypertension 9:295–303

    PubMed  Google Scholar 

  21. Lückhoff A, Pohl U, Mülsch A, Busse R (1988) Differential role of extra-and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 95:189–196

    PubMed  Google Scholar 

  22. Lückhoff A, Busse R (1990) Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn-Schmiedebergs Arch Pharmacol 342:94–99

    PubMed  Google Scholar 

  23. Lückhoff A, Busse R (1990) Calcium influx into endothelial cells and formation of EDRF is controlled by the membrane potential. Pflügers Arch 416:305–311

    Article  PubMed  Google Scholar 

  24. Marietta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of l-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Article  Google Scholar 

  25. Marietta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Bioch Sci 14:488–492

    Article  Google Scholar 

  26. Morgan-Boyd R, Stewart JM, Vavrek RJ, Hassid A (1987) Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamcis in endothelial cells. Am J Physiol 253:C588–C598

    PubMed  CAS  Google Scholar 

  27. Mülsch A, Böhme E, Busse R (1987) Stimulation of soluble guanylate cyclase by endotheliumderived relaxing factor from cultured endothelial cells. Eur J Pharmacol 135:247–250

    Article  PubMed  Google Scholar 

  28. Mülsch A, Bassenge E, Busse R (1989) Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. Naunyn-Schmiedebergs Arch Pharmacol 340:767–770

    PubMed  Google Scholar 

  29. Myers RR, Minor RL, Guerra R, Bates JN, Harrison DG (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 365:161–163

    Article  Google Scholar 

  30. Olesen SP, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170

    Article  PubMed  CAS  Google Scholar 

  31. Olesen SP, Davies PF, Clapham DE (1988) Muscarinic-activated K+ current in bovine aortic endothelial cells. Circ Res 62:1059–1064

    PubMed  CAS  Google Scholar 

  32. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  33. Sauvé R, Parent L, Simoneau C, Roy G (1988) External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflülgers Arch 412:469–481

    Article  Google Scholar 

  34. Schilling WP (1989) Effect of membrane potential on cytosolic calcium of bovine aortic endothelial cells. Am J Physiol 257:H778–H784

    PubMed  CAS  Google Scholar 

  35. Schilling WP, Rajan L, Strobl-Jager E (1989) Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. Saturability, selectivity, and kinetics. J Biol Chem 264:12838–12848

    CAS  Google Scholar 

  36. Schröder H, Schrör K (1989) Cyclic GMP stimulation by vasopressin in LLC-PK1 kidney epithelial cells is l-arginine-dependent. Naunyn-Schmiedebergs Arch Pharmacol 340:475–477

    Article  PubMed  Google Scholar 

  37. Wright CD, Mülsch A, Busse R, Osswald H (1989) Generation of nitric oxide by human neutrophils. Biochem Biophys Res Commun 160:813–819

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Busse, R., Lückhoff, A., Mülsch, A. (1991). Cellular mechanisms controlling EDRF/NO formation in endothelial cells. In: Drexler, H., Zeiher, A.M., Bassenge, E., Just, H. (eds) Endothelial Mechanisms of Vasomotor Control. Steinkopff. https://doi.org/10.1007/978-3-642-72461-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72461-9_2

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72463-3

  • Online ISBN: 978-3-642-72461-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics