Skip to main content

Metal Regulation of Gene Expression in Bacterial Systems

  • Conference paper
Molecular Microbiology

Part of the book series: NATO ASI Series ((ASIH,volume 103))

Abstract

Metals are important in biochemical processes (da Silva and Williams, 1991). They can be cofactors of enzymatic reactions or they can be the key redox components of electron transport processes. Zinc is an example of a metal whose properties as a Lewis acid are used in the reactions of a wide variety of catalytic processes, and a quick glance through a biochemistry text book will generate a large list of zinc-containing enzymes. The transition metals, iron and copper, can readily lose or gain electrons under physiological conditions and are used in electron transport processes and for some biochemical redox reactions. Metals, such as zinc and magnesium, can also play a structural role in ensuring that enzymes or their substrates maintain the correct atomic and electronic structures. Because they are essential micronutrients to all cells, the intracellular concentrations of metals must be regulated, and in bacteria this appears to be done at the level of transcription of the genes encoding proteins for the uptake and export of the metal. Moreover, because the bacterial cell has no compartments, other than invaginations of the cytoplasmic membrane, and because metals of physiological importance have similar chemical properties, the regulation of expression of the transporter proteins may be controlled specifically by the intracellular concentration of a single metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, M., Lyass, L., Markham, P. N., Taylor, S. S., Vazquez-Laslop, N. and Neyfakh, A. A. (1995) Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J Bacteriol 177: 3904–10.

    PubMed  CAS  Google Scholar 

  • Amabile-Cuevas, C. F. and Demple, B. (1991) Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucl. Acids Res. 19: 4479–84.

    Article  CAS  Google Scholar 

  • Angerer, A., Enz, S., Ochs, M. and Braun, V. (1995) Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. Fecl belongs to a new subfamily of sigma 70-type factors that respond to extracytoplasmic stimuli. Mol Microbiol 18: 163–74.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, A. Z., Bradner, J. E. and O’Halloran, T. V. (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374: 371–5.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, A. Z., Chael, M. L. and O’Halloran, T. V. (1992) Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355: 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N. L., Barrett, S. R., Camakaris, J., Lee, B. T. and Rouch, D. A. (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17: 1153–66.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N. L., Lee, B. T. O. and Silver, S. (1993) Bacterial transport of and resistance to copper. In Metal ions in biological systems Sigel, H. and Sigel, A. (eds) New York: Marcel Dekker, 405–430

    Google Scholar 

  • da Silva, J. J. R. F. and Williams, R. J. P. (1991) The Biological Chemistry of the Elements. Oxford: Clarendon Press

    Google Scholar 

  • de Lorenzo, V., Wee, S., Herrero, M. and Neilands, J. B. (1987) Operator sequences of the aerobactin operon of plasmid Co1V-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169: 2624–30.

    PubMed  Google Scholar 

  • Hobman, J. L. and Brown, N. L. (1997) Mercury Resistance Genes. In Metal Ions in Biological Systems Sigel, A. and Sigel, H. (eds) New York: Marcel Dekker Inc., 527–568

    Google Scholar 

  • Holmes, D. J., Caso, J. L. and Thompson, C. J. (1993) Autogenous transcriptional activation of a thiostrepton-induced gene in Streptomyces lividans. Embo J 12: 3183–91.

    PubMed  CAS  Google Scholar 

  • Hunt, M. D., Pettis, G. S. and McIntosh, M. A. (1994) Promoter and operator determinants for Fur-mediated iron regulation in the bidirectional fepA-fes control region of the Escherichia coli enterobactin gene system. J Bacteriol 176: 3944–55.

    PubMed  CAS  Google Scholar 

  • Lonetto, M. A., Brown, K. L., Rudd, K. E. and Buttner, M. J. (1994) Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A 91: 7573–7.

    Article  PubMed  CAS  Google Scholar 

  • Mellano, M. A. and Cooksey, D. A. (1988) Induction of the copper resistance operon from Pseudomonas syringae. J Bacteriol 170: 4399–401.

    PubMed  CAS  Google Scholar 

  • Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J. and Charles, P. (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid bound resistance to heavy metals. J. Bacteriol. 162: 328–334.

    PubMed  CAS  Google Scholar 

  • Mills, S. D., Lim, C. K. and Cooksey, D. A. (1994) Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol Gen Genet 244: 341–51.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D., Yu, H. R., Nucifora, G. and Misra, T. K. (1991) Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in gram-negative bacteria. J Biol Chem 266: 18538–42.

    PubMed  CAS  Google Scholar 

  • Nucifora, G., Chu, L., Silver, S. and Misra, T. K. (1989) Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J Bacteriol 171: 4241–7.

    PubMed  CAS  Google Scholar 

  • Ochs, M., Angerer, A., Enz, S. and Braun, V. (1996) Surface signaling in transcriptional regulation of the ferric citrate transport system of Escherichia coli: mutational analysis of the alternative sigma factor Fecl supports its essential role in fec transport gene transcription. Mol Gen Genet 250: 455–65.

    PubMed  CAS  Google Scholar 

  • Odermatt, A. and Solioz, M. (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270: 4349–54.

    Article  PubMed  CAS  Google Scholar 

  • Rouch, D. A. and Brown, N. L. (1995) Induction of bacterial mercury-and copper-responsive promoters: functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors. J Indust Microbiol 14: 249–253.

    Google Scholar 

  • Rouch, D. A. and Brown, N. L. (1997) Copper-Inducible Transcriptional Regulation at Two Promoters in the Escherichia coli Copper Resistance Determinant pco. Microbiology 143: 1191–1202.

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky, M. J., Cregan, P. B., Gottfert, M., Sharma, A., Gerhold, D., Rodriguez, Q. F., Keyser, H. H., Hennecke, H. and Stacey, G. (1991) The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci U S A 88: 637–41.

    Article  PubMed  CAS  Google Scholar 

  • Silver, S. (1996) Bacterial resistances to toxic metal ions-a review. Gene 179: 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Silver, S. and Phung, L. T. (1996) Bacterial heavy metal resistance: new surprises. Ann Rev Microbiol 50: 753–789.

    Article  CAS  Google Scholar 

  • Stojiljkovic, I. and Hantke, K. (1995) Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol Gen Genet 247: 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Summers, A. O. (1992) Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol 174: 3097–101.

    PubMed  CAS  Google Scholar 

  • Wee, S., Neilands, J. B., Bittner, M. L., Hemming, B. C., Haymore, B. L. and Seetharam, R. (1988) Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K 12. Biol Methods 1: 62–8.

    Article  CAS  Google Scholar 

  • Wu, J. and Rosen, B. P. (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5: 1331–6.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Shi, W. and Rosen, B. P. (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271: 242–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, N.L., Brocklehurst, K.R., Lawley, B., Hobman, J.L. (1998). Metal Regulation of Gene Expression in Bacterial Systems. In: Busby, S.J.W., Thomas, C.M., Brown, N.L. (eds) Molecular Microbiology. NATO ASI Series, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72071-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72071-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72073-4

  • Online ISBN: 978-3-642-72071-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics