Skip to main content

Part of the book series: Biotechnology Monographs ((BIOTECHNOLOGY,volume 2))

  • 821 Accesses

Abstract

Microbial cells exist in a range of sizes, shapes and phases of growth, individually or aggregated into various microstructures. These conditions are of practical significance in anaerobic digestion since the form of the biomass is likely to have a significant effect on organism survival and nutrient transfer, and thus the efficiency of the overall digestion process. In a turbulent system, attached biomass can persist whilst cells in suspension are lost with the effluent [1]. Abiotic suspended particles may be utilised as adhesion sites for bacteria, aiding their persistence by enhanced sedimentation and hence their avoidance of washout in the effluent. Microstructural forms of biomass are shown in Fig. 11; these can be major determinants of mass transfer. Formation of a particular structural aggregate depends on several factors including the size range of cells within the microbial population and the location of each individual cell relative to other cells and the medium, for example at a gas/liquid interface. Non-uniform gradients of organic compounds, ions, enzymes and conductivity (due to bacterial metabolism) exist as the aggregates are non-homogeneous, filamentous forms sometimes predominating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bungay HR, Bungay ML, Haas CN (1983) Engineering at the microorganism scale. In: Tsao GT (ed) Ann reports on fermentation processes, vol 6. Academic Press, New York London, p 149

    Google Scholar 

  2. Rutter PR (1980) The physical chemistry of the adhesion of bacteria and other cells. In: Curtis ASG, Pitts JD (eds) Cell adhesion and motility: British Soc for Cell Biol, Symp 3. Cambridge University Press, Cambridge, p 103

    Google Scholar 

  3. Dolowy K (1980) A physical theory of cell-cell and cell-substratum interactions. In: Curtis ASG, Pitts JD (eds) Cell adhesion and motility: British Soc for Cell Biol, Symp 3. Cambridge University Press, Cambridge, p 39

    Google Scholar 

  4. Characklis WG, Cooksey KE (1983) Adv Appi Microbiol 29: 93

    Article  CAS  Google Scholar 

  5. Marshall KC (1976) Interpretation in microbiol ecology. Harvard University Press, Cambridge, Mass London, p 1

    Google Scholar 

  6. Fletcher M (1979) The attachment of bacteria to surfaces in aquatic environments. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London New York San Fransisco, p 87

    Google Scholar 

  7. Derjaguin BV, Landau L (1941) Acta Physicochimica URSS 14: 633

    Google Scholar 

  8. Verwey EJW, Overbeek JThG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  9. Rogers HJ (1979) Adhesion of microorganisms to surfaces: some general considerations on the role of the envelope. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London New York San Fransisco, p 29

    Google Scholar 

  10. Dexter SC, Sullivan JD, Williams J, Watson SW (1975) Appi Microbiol 30: 298

    CAS  Google Scholar 

  11. Pethica BA (1979) Microbial cell adhesion. In: Berkeley RCW, Lynch JM, Meiling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, p 19

    Google Scholar 

  12. Lips A, Jessup NE (1979) Colloidal aspects of bacterial adhesion. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London New York San Francisco, p 5

    Google Scholar 

  13. Dehneke B (1975) J Colloid Interface Sci 40: 1

    Article  Google Scholar 

  14. Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53: 314

    Article  CAS  Google Scholar 

  15. Krupp H (1967) Adv Colloid Interface Sci 1: 111

    Article  CAS  Google Scholar 

  16. Trulear MG, Characklis WG (1982) J Water Pollut Control Fed 54: 1288

    CAS  Google Scholar 

  17. Costerton JW (1984) Dev Ind Microbiol 25: 363

    CAS  Google Scholar 

  18. Humphrey BA, Dickson MR, Marshall KC (1979) Arch Microbiol 120: 231

    Article  CAS  Google Scholar 

  19. Nishikawa S, Kuriyama M (1968) Water Res 2: 811

    Article  CAS  Google Scholar 

  20. Brown MJ, Lester JN (1979) Water Res 13: 817

    Article  CAS  Google Scholar 

  21. Pavoni JL, Tenney MW, Echelberger WF (1972) J Water Pollut Control Fed 44: 414

    CAS  Google Scholar 

  22. Sutherland IW (1977) Bacterial polysaccharides. In: Sutherland IW (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, New York, p 27

    Google Scholar 

  23. Marrie TJ, Nelligan J, Costerton JW (1982) Circulation 66: 1339

    Article  CAS  Google Scholar 

  24. Costerton JW, Irvin RT, Cheng K-J (1981) Ann Rev Microbiol 35: 399

    Article  Google Scholar 

  25. Ruseska I, Robbins J, Costerton JW, Lashen ES (1982) Oil Gas J 80 (10): 253

    CAS  Google Scholar 

  26. Howell JA, Atkinson B (1976) Water Res 18: 307

    Article  Google Scholar 

  27. Powell MS, Slater NKH (1982) Biotechnol Bioeng 24: 2527

    Article  CAS  Google Scholar 

  28. Messing RA (1983) Bioenergy production and pollution control with immobilized microbes. In: Tsao GT (ed) Ann reports on fermentation processes, vol 6. Academic Press, New York London, p 23

    Google Scholar 

  29. Messing RA, Stineman TL (1983) Annals NY Acad Sci 413: 501

    Article  CAS  Google Scholar 

  30. Pike EB, Curds CR (1971) Soc Appi Bacteriol Symp 1: 123

    CAS  Google Scholar 

  31. Melik DH, Fogler HS (1984) J Colloid Interface Sci 101: 72

    Article  CAS  Google Scholar 

  32. Melik DH, Fogler HS (1984) J Colloid Interface Sci 101: 84

    Article  CAS  Google Scholar 

  33. Daniels S (1974) AIChE Symp Ser 70 (136): 266

    CAS  Google Scholar 

  34. Ash SG (1979) Adhesion of microorganisms in fermentation processes. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London, New York San Francisco, p 57

    Google Scholar 

  35. Forster CF (1968) Water Res 2: 767

    Article  CAS  Google Scholar 

  36. Forster CF (1971) Water Res 5: 861

    Article  CAS  Google Scholar 

  37. McLoughlin AJ, Vallom JK (1984) J Appi Bacteriol 57: 485

    Article  CAS  Google Scholar 

  38. Mitchell P (1966) Biol Rev 41: 445

    Article  CAS  Google Scholar 

  39. Hamilton WA (1977) Energy coupling in substrate and group translocation. In: Haddock BA, Hamilton WA (eds) Microbial energetics: 27th Symp Soc for Gen Microbiol. Cambridge University Press, Cambridge, p 185

    Google Scholar 

  40. Treweek GP, Morgan JJ (1977) J Colloid Interface Sci 60: 258

    Article  CAS  Google Scholar 

  41. Napper DH (1977) J Colloid Interface Sci 58: 390

    Article  CAS  Google Scholar 

  42. Pethica BA (1961) Expt Cell Res Suppl 8: 123

    Article  CAS  Google Scholar 

  43. Tenney MW, Stumm WJ (1965) J Water Pollut Control Fed 32: 1370

    Google Scholar 

  44. Busch PL, Stumm WJ (1968) Environ Sci Technol 2: 49

    Article  CAS  Google Scholar 

  45. Jewell WJ, Switzenbaum MS, Morris JW (1981) J Water Pollut Control Fed 53: 482

    Google Scholar 

  46. Parker DS, Kaufmann WJ, Jenkins D (1971) J Water Pollut Control Fed 43: 1817

    CAS  Google Scholar 

  47. Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG (1979) Water Res 13: 571

    Article  CAS  Google Scholar 

  48. Lettinga G, van Velsen AFM, de Zeeuw W, Hobma SW (1979) Feasibility of the upflow anaerobic sludge blanket (UASB) process. In:Proc 1979 Nat Conf on Environ Eng July 9–11. ASCE, San Francisco, p 35

    Google Scholar 

  49. Pipyn P, Verstraete W (1979) Biotechnol Lett 1: 495

    Article  CAS  Google Scholar 

  50. Ross WR (1984) Water SA 10: 197

    CAS  Google Scholar 

  51. Hulsoff-Pol LW, de Zeeuw WJ, Velzeboer CTM, Lettinga G (1983) Water Sci Technol 15: 291

    Google Scholar 

  52. Klapwijk A, Smit H, Moore A (1981) Denitrification of domestic wastewater in an upflow sludge blanket reactor without carrier material for the biomass. In: Cooper PF, Atkinson B (eds) Biological fluidised bed treatment of water and wastewater. Ellis Horwood, Chichester, p 205

    Google Scholar 

  53. Bochem HP, Schoberth SM, Sprey B, Wengher P (1982) Can J Microbiol 28: 500

    Article  Google Scholar 

  54. Bucke C (1983) Biochem Soc Symp 48: 25

    CAS  Google Scholar 

  55. Venkatasubramanian K, Veith WR (1979) Prog Ind Microbiol 15: 61

    CAS  Google Scholar 

  56. Marconi W, Moriski F (1979) Appi Biochem Bioeng 2: 219

    CAS  Google Scholar 

  57. Kierstan M, Bucke C (1977) Biotechnol Bioeng 19: 387

    Article  CAS  Google Scholar 

  58. Cheetham PSJ, Blunt KW, Bucke C (1979) Biotechnol Bioeng 21: 2155

    Article  CAS  Google Scholar 

  59. Paul F, Vignais PM (1980) Enzyme Microbiol Technol 2: 281

    Article  CAS  Google Scholar 

  60. White DC (1983) Symp Soc Gen Microbiol 34: 37

    Google Scholar 

  61. Davis WM, White DC (1980) Appi Environ Microbiol 40: 539

    CAS  Google Scholar 

  62. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Oecologia 40: 51

    Article  Google Scholar 

  63. King JD, White DC, Taylor CW (1977) Appi Environ Microbiol 33: 1177

    CAS  Google Scholar 

  64. White DC, Bobbie RJ, Morrison SJ, Oosterhof DK, Taylor CW, Meeter DA (1977) Limnol Oceanography 22: 1089

    Article  CAS  Google Scholar 

  65. Kates M (1964) Adv Lipid Res 2: 17

    CAS  Google Scholar 

  66. Bobbie RJ, White DC (1980) Appl Environ Microbiol 39: 1212

    CAS  Google Scholar 

  67. Moriarty DJW (1977) Oecologia 26: 317

    Article  Google Scholar 

  68. King JD, White DC (1977) Appl Environ Microbiol 33: 777

    CAS  Google Scholar 

  69. Fazio SD, Mayberry WR, White DC (1979) Appl Environ Microbiol 38: 349

    CAS  Google Scholar 

  70. Saddler JN, Wardlaw AC (1980) Antonie van Leeuwenhoek 46: 27

    Article  CAS  Google Scholar 

  71. LaBach JP, White DC (1969) Lipid Res 10: 528

    CAS  Google Scholar 

  72. White DC, Tucker AN (1970) Lipids 5: 56

    Article  CAS  Google Scholar 

  73. Rizza B, Tucker AN, White DC (1970) J Bacteriol 101: 84

    CAS  Google Scholar 

  74. White DC, Tucker AN, Sweeley CC (1969) Biochim Biophys Acta 187: 527

    CAS  Google Scholar 

  75. van den Berg L, Lentz CP, Athey RJ, Rooke EA (1974) Biotechnol Bioeng 16: 1459

    Article  Google Scholar 

  76. Delafontaine MJ, Naveau HP, Nyns EJ (1979) Biotechnol Lett 1: 71

    Article  CAS  Google Scholar 

  77. Valke D, Verstraete W (1983) J Water Pollut Control Fed 55: 1191

    Google Scholar 

  78. Lawrence PL (1969) J Water Pollut Control Fed 41: R1

    CAS  Google Scholar 

  79. van den Berg L, Patel GB, Clark DS, Lentz CP (1976) Can J Microbiol 22: 1312

    Article  Google Scholar 

  80. Binot RA, Naveau HP, Nyns EJ (1981) Biotechnol Lett 3: 623

    Article  CAS  Google Scholar 

  81. Pause SM, Switzenbaum MS (1984) Biotechnol Lett 6: 77

    Article  CAS  Google Scholar 

  82. Tsezos M, Benedek A (1980) Water Res 14: 689

    Article  Google Scholar 

  83. Rittmann BE, McCarty PL (1980) Biotechnol Bioeng 22: 2343

    Article  CAS  Google Scholar 

  84. Rittmann BE, McCarty PL (1980) Biotechnol Bioeng 22: 2359

    Article  CAS  Google Scholar 

  85. Rittmann BE (1982) Biotechnol Bioeng 24: 501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stronach, S.M., Rudd, T., Lester, J.N. (1986). Forms of Biomass. In: Anaerobic Digestion Processes in Industrial Wastewater Treatment. Biotechnology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71215-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71215-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71217-3

  • Online ISBN: 978-3-642-71215-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics