Skip to main content

Genetic Analysis of Streptococcus mutans Virulence

  • Chapter
Genetic Approaches to Microbial Pathogenicity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 118))

Abstract

CLARKE (1924) first isolated and described a streptococcus from a human carious lesion and inferred that it was a potential causative agent of dental caries. He named the organism Streptococcus mutans. This observation went unnoticed for some 35 years until ORLAND (1959) demonstrated that enterococci could cause dental caries in germ-free rats and FITZGERALD and colleagues (FITZGERALD and KEYES 1960; FITZGERALD et al. 1960) found that maximum cariogenicity in germ-free animals was observed following infection with streptococci of the type originally described by CLARKE. It was subsequently demonstrated that S. mutans is the principal etiological agent of dental caries in humans (see NEWBRUN 1978). S. mutans only colonizes humans following tooth eruption during the 1st year of life, with most humans being colonized during early childhood (STILES et al. 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asknes A (1978) Combined extracellular sucrolytic enzyme power from a strain of Streptococcus mutans, and purification results. Scand J Dent Res 86:459–469

    Google Scholar 

  • Behnke D, Ferretti JJ (1980) Molecular cloning of an erythromycin resistance determinant in streptococci. J Bacteriol 144:806–813

    PubMed  CAS  Google Scholar 

  • Behnke D, Gilmore MS, Ferretti JJ (1981) Plasmid pGB301, a new multiple resistance streptococcal cloning vehicle and its use in cloning of the gentamicin/kanamycin resistance determinant. MGG 182:414–421

    PubMed  CAS  Google Scholar 

  • Bienenstock J, McDermott M, Befus D, O’Neill M (1978) A common mucosal immunologic system involving the bronchus, breast and bowel. Adv Exp Med Biol 107:53–59

    PubMed  CAS  Google Scholar 

  • Birkhed D, Tanzer JM (1979) Glycogen synthesis pathway in Streptococcus mutans strain NCTC 10449S and its glycogen synthesis-defective mutant 805. Arch Oral Biol 24:67–73

    Article  PubMed  CAS  Google Scholar 

  • Bratthall D (1970) Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol Rev 21:143–152

    CAS  Google Scholar 

  • Bulkacz J, Hill JH (1977) Glucosyl transferase from Streptococcus mutans and a non-plaque forming mutant. Arch Oral Biol 22:119–123

    Article  PubMed  CAS  Google Scholar 

  • Calmes R (1978) Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport. Infect Immun 19:934–942

    PubMed  CAS  Google Scholar 

  • Cardineau GA, Curtiss R III (to be published) Identification and nucleotide sequence of the promoter region of the Streptococcus mutans asd gene efficiently expressed in Escherichia coli.

    Google Scholar 

  • Cardineau GA, Curtiss R III (to be published) The nucleotide sequence of the asd gene of Streptococcus mutans: evidence of attenuator-like sequences preceding the structural gene.

    Google Scholar 

  • Cardineau GA, Murchison HH, Perry D, Barrett JF (1983) Transformation of Streptococcus mutans: comparison of “shuttle” plasmid versus chromosomal efficiency. Abstracts of the annual meeting. ASM, Washington DC

    Google Scholar 

  • Carlsson J (1970) A levansucrase from Streptococcus mutans. Caries Res 4:97–113 Carter PB, Collins FM (1974) The route of enteric infection in normal mice. J Exp Med 139:1189–1203

    Google Scholar 

  • Caufield PW, Wannemuehler Y, Hansen JB (1982) Familial clustering of the Streptococcus mutans cryptic plasmid in a dental clinic population. Infect Imm 38:785–787

    CAS  Google Scholar 

  • Caufield PW, Childers NK, Allen DN, Hansen JB (1985) Distinct bacteriocin groups correlate with different groups of Streptococcus mutans plasmids. Infect Immun 48:51–56

    PubMed  CAS  Google Scholar 

  • Cebra JJ, Gearhart PJ, Kamat R, Robertson SM, Tseng J (1976) Origin and differentiation of lymphocytes involved in the secretory IgA response. Cold Spring Harbor Symp Quant Biol 41:201–215

    Google Scholar 

  • Charlton G, Fitzgerald RJ, Keyes PH (1971a) Determination of saliva and dental plaque pH in hamsters with glass microelectrodes. Arch Oral Biol 16:649–654

    Article  PubMed  CAS  Google Scholar 

  • Charlton G, Fitzgerald RJ, Keyes PH (1971b) Hydrogen ion activity in dental plaque of hamsters during metabolism of sucrose, glucose and fructose. Arch Oral Biol 16:655–661

    Article  PubMed  CAS  Google Scholar 

  • Chludzinski AM, Germaine GR, Schachtele CF (1976) Streptococcus mutans dextransucrase: purification, properties and requirements for primer dextran. J Dent Res C: C75-C86

    Google Scholar 

  • Ciardi JE (1983) Purification and properties of glucosyltransferases from Streptococcus mutans: a review. In: Doyle RJ, Ciardi JE (eds) Glucosyltransferases, glucans, sucrose and dental caries. Sp suppl chemical senses. IRL, Washington DC, pp 51–64

    Google Scholar 

  • Ciardi JE, Hageage GJ Jr, Wittenberger CL (1976) Multicomponent nature of the glucosyltransferase system of Streptococcus mutans. J Dent Res C: C87-C96

    Google Scholar 

  • Clark WB, Gibbons RJ (1977) Influence of salivary components and extra cellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect Immun 18:514–523

    PubMed  CAS  Google Scholar 

  • Clark WB, Bammann LL, Gibbons RJ (1978) Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surface. Infect Immun 19:846–853

    PubMed  CAS  Google Scholar 

  • Clarke JK (1924) On the bacterial factor in the etiology of dental caries. Br J Exp Pathol 5:141–147

    CAS  Google Scholar 

  • Clewell DB (1981) Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiol Rev 45:409–436

    PubMed  CAS  Google Scholar 

  • Cohen B, Peach SL, Russell RR (1983) Immunization against dental caries. In: Easmon CSF, Jeljas- zewicz J (eds) Medical microbiology, vol 2. Immunization against bacterial disease. Academic, London

    Google Scholar 

  • Coykendall AL (1970) Base composition of deoxyribonucleic acid isolated from Streptococci. Arch Oral Biol 15:365–368

    Article  PubMed  CAS  Google Scholar 

  • Coykendall AL (1977) Proposal to elevate the subspecies of Streptococcus mutans to species status, based on their molecular composition. Int J Syst Bacteriol 27:26–30

    Article  Google Scholar 

  • Curtiss R III, Pereira DA, Hsu JC, Hull SC, Clark JE, Maturin LJ, Goldschmidt R, Moody R, Inoue M, Alexander L (1976) Biological containment: the subordination of Escherichia coli K-12. In: Beers RF Jr, Bassett EG (eds) Recombination molecules: impact on science and society. Raven, New York, pp 45–56

    Google Scholar 

  • Curtiss R III, Jagusztyn-Krynicka EK, Hansen JB, Smorawinska M, Abiko Y, Cardineau G (1982a) Expression of Streptococcus mutans plasmid and chromosomal genes in Escherichia coli K-12. In: Mitsuhashi S (ed) Microbial drug resistance, vol 3. Scientific societies, Tokyo, pp 15–27

    Google Scholar 

  • Curtiss R III, Robeson JP, Barletta R, Abiko Y, Smorawinska M (1982 b) Synthesis and function of Streptococcus mutans cell surface proteins in Escherichia coli. In: Schlessinger D (ed) Microbiology - 1982. American Society for Microbiology, Washington DC, pp 253–257

    Google Scholar 

  • Curtiss R III, Holt RG, Barletta RG, Robeson JP, Saito S (1983 a) Escherichia coli strains producing Streptococcus mutans proteins responsible for colonization and virulence. In: McGhee JR, Mes- tecky J (ed) The secretory immune system. Ann NY Acad Sci 409:688–696

    Google Scholar 

  • Curtiss R III, Larrimore SA, Holt RG, Barrett JF, Barletta R, Murchison HH, Michalek SM, Saito S (1983 b) Analysis of Streptococcus mutans virulence attributes using recombinant DNA and immunological techniques. In: Doyle RJ, Ciardi JE (eds) Glucosyltransferases, glucans, sucrose and dental caries. Sp suppl chemical senses. IRL, Washington DC, pp 95–104

    Google Scholar 

  • Curtiss R III, Murchison HH, Nesbitt WE, Barrett JF, Michalek SM (1985) Use of mutants and gene cloning to identify and characterize colonization mechanisms of Streptococcus mutans. In: Mergenhagen S, Rosan B (eds) Molecular basis for oral microbial adhesion. American Society for Microbiology, Washington DC

    Google Scholar 

  • Dao ML, Ferretti JJ (1985) Streptococcus-Escherichia coli shuttle vector pSA3 and its use in cloning streptococcal genes. Appl Environ Microbiol 49:115–119

    PubMed  CAS  Google Scholar 

  • Demerec M, Adelberg EA, Clark AJ, Hartman PE (1966) A proposal for uniform nomenclature in bacterial genetics. Genetics 54:61–76

    PubMed  CAS  Google Scholar 

  • DeStoppelaar JD, Konig KG, Plasschaert AJM, van der Hoeven JS (1971) Decreased cariogenicity of a mutant of Streptococcus mutans. Arch Oral Biol 16:971–975

    Article  CAS  Google Scholar 

  • Douglas CWI, Russell RRB (1982) Effect of specific antisera on adherence properties of the oral bacterium Streptococcus mutans. Arch Oral Biol 27:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Douglas CWI, Russell RRB (to be published) Effect of specific antisera upon Streptococcus mutans adherence to saliva-coated hydroxyapatite. FEMS Microbiol Lett 25:211–214

    Article  Google Scholar 

  • Dunny GM, Birch N, Hascall G, Clewell DB (1973) Isolation and characterization of plasmid deoxyribonucleic acid from Streptococcus mutans. J Bacteriol 114:1362–1364

    PubMed  CAS  Google Scholar 

  • Ellis DW, Miller CH (1977) Extracellular dextran hydrolyase from Streptococcus mutans strain 6715. J Dent Res 56:57–59

    Article  PubMed  CAS  Google Scholar 

  • Ericson T, Magnusson I (1976) Affinity for hydroxyapatite of salivary substances inducing aggregation of oral Streptococci. Caries Res 10:8–18

    Article  PubMed  CAS  Google Scholar 

  • Ericson T, Carlen A, Dagerskog E (1976) Salivary aggregating factors. In: Stiles HM, Loesche WJ, O’Brien JC (eds) Proc microbiol aspects of dental caries. Sp Supplement Microbiol Abst 1:151–162 Information Retrieval Inc., Washington DC

    Google Scholar 

  • Figures WR, Edwards JR (1979) Resolution of the glucosyltransferase activities from two strains of Streptococcus mutans by polyacrylamide gel electrophoresis in the presence of Tween 80. Biochem Biophys Acta 577:142–146

    PubMed  CAS  Google Scholar 

  • Fitzgerald RJ, Keyes PH (1960) Demonstration of the etiological role of streptococci in experimental caries in the hamsters. J Am Dent Assoc 61:9–19

    PubMed  CAS  Google Scholar 

  • Fitzgerald RJ, Jordan HV, Stanley HR (1960) Experimental caries and gingival pathologic changes in gnotobiotic rats. J Dent Res 39:923–935

    Article  PubMed  CAS  Google Scholar 

  • Freedman ML, Guggenheim B (1983) Dextran-induced aggregation in a mutant of Streptococcus sobrinus 6715–13.Infect Immun 41:264–274

    PubMed  CAS  Google Scholar 

  • Freedman ML, Tanzer JM (1974) Dissociation of plaque formation from glucan-induced agglutination in mutants of Streptococcus mutans. Infect Immun 10:189–196

    PubMed  CAS  Google Scholar 

  • Freedman ML, Birkhed D, Granath K (1978) Analyses of glucans from cariogenic and mutant Streptococcus mutans. Infect Immun 21:17–27

    PubMed  CAS  Google Scholar 

  • Freedman ML, Tanzer JM, Coykendall AL (1981) The use of genetic variants in the study of dental caries. In: Tanzer JM (ed) Animal models in cariology. Information Retrieval, Washington DC, pp 247–269

    Google Scholar 

  • Freedman M, Tanzer J, Swayne E, Allenspach-Petrzilka G (1983) Colonization and virulence of Streptococcus sobrinus: the roles of glucan-associated phenomena revealed by the use of mutants. In: Doyle RJ, Ciardi JE (eds) Glucosyltransferases, glucans, sucrose and dental caries. Spec suppl chemical senses. IRL, Washington DC, pp 39–49

    Google Scholar 

  • Fukushima K, Motoda R, Takada K, Ikeda T (1981) Resolution of Streptococcus mutans glucosyltransferase into two components essential for water-insoluble glucan synthesis. FEBS Lett 128:213–216

    Article  PubMed  CAS  Google Scholar 

  • Gawron-Burke C, Clewell DB (1982) A transposon in Streptococcus faecalis with fertility properties. Nature 300:281–284

    Article  PubMed  CAS  Google Scholar 

  • Gawron-Burke C, Clewell DB (1984) Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from Gram-positive bacteria. J Bacteriol 159:214–221

    PubMed  CAS  Google Scholar 

  • Germaine GR, Schachtele CF (1976) Streptococcus mutans dextransucrase: mode of interaction with high-molecular-weight dextran and role in cellular aggregation. Infect Immun 13:365–372

    PubMed  CAS  Google Scholar 

  • Germaine GR, Harlander SK, Leung WLS, Schachtele CF (1977) Streptococcus mutans dextransucrase: functioning of primer dextran and endogenous dextranase in water-soluble and water- insoluble glucan synthesis. Infect Immun 16:637–648

    PubMed  CAS  Google Scholar 

  • Gibbons RJ, Fitzgerald RJ (1969) Dextran-induced agglutination of Streptococcus mutans and its potential role in the formation of microbial dental plaques. J Bacteriol 98:341–346

    PubMed  CAS  Google Scholar 

  • Gibbons RJ, Nygaard M (1968) Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol 13:1249–1262

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, Socransky SS (1962) Intracellular polysaccharide storage by organisms in dental plaque. Arch Oral Biol 7:73–80

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, Spinell DM (1970) Salivary induced aggregation of plaque bacteria. In: McHugh WD (ed) Dental plaque. Livingstone, Edinburgh, pp 207–215

    Google Scholar 

  • Gibbons RJ, van Houte J (1980) Bacterial adherence and the formation of dental plaque. In: Beachey EH (ed) Bacterial adherence, receptors and recognition, series B, vol 6. Chapman and Hall, London, pp 61–104

    Google Scholar 

  • Graves W, Verran J (1984) Effect of dextranase and protease enzymes on aggregation of Streptococcus mutans: colorimetric and electron microscopic studies. Microbiology 40:145–152

    CAS  Google Scholar 

  • Greer SB, Hsiang W, Musil G, Zinner DD (1971) Virus of cariogenic streptococci. J Dent Res 50:1594–1604

    Article  PubMed  CAS  Google Scholar 

  • Guerola N, Ingraham JL, Cerdo-Olmedo E (1971) Induction of closely linked multiple mutations by nitroguanidine. Nature 230:122–125

    CAS  Google Scholar 

  • Guggenheim B, Burckhardt JJ (1974) Isolation and properties of a dextranase from Streptococcus mutans OMZ176. Helv Odontol Acta 18:101–103

    PubMed  CAS  Google Scholar 

  • Hamada S, Slade HD (1980 a) Biology, immunity and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384

    PubMed  CAS  Google Scholar 

  • Hamada S, Slade HD (1980 b) Mechanisms of adherence of Streptococcus mutans to smooth surfaces in vitro. In: Beachey EH (ed) Bacterial adherence, receptors and recognition, series B, vol 6. Chapman and Hall, London, pp 106–135

    Google Scholar 

  • Hamada S, Mizuno J, Murayama Y, Ooshima T, Masuda N, Sobue S (1975) Effect of dextranase on the extracellular polysaccharide synthesis of Streptococcus mutans: chemical and scanning electron microscopy studies. Infect Immun 12:1415–1425

    PubMed  CAS  Google Scholar 

  • Hamada S, Tai S, Slade HD (1978) Binding of Glucosyltransferase and glucan synthesis by Streptococcus mutans and other bacteria. Infect Immun 21:213–220

    PubMed  CAS  Google Scholar 

  • Hamada S, Koga T, Okahashi N (1983) Characterization of a mutant of serotype g Streptococcus mutans strain 6715 lacking dextran-induced agglutination. Zentralbl Bakteriol Mikrobiol Hyg [A] 254:343–351

    CAS  Google Scholar 

  • Hamilton IR, Lebtag H (1979) Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. J Bacteriol 140:1102–1104

    PubMed  CAS  Google Scholar 

  • Hansen JB, Abiko Y, Curtiss R III (1981) Characterization of the Streptococcus mutans plasmid pV318 cloned into Escherichia coli. Infect Immun 31:1034–1043

    PubMed  CAS  Google Scholar 

  • Hansen JB, Jagusztyn-Krynicka EK, Crow VL, Thomas TD (1985) Streptococcus mutans serotype c tagatose-6-phosphate pathway gene cluster

    Google Scholar 

  • Hare MD, Svensson S, Walker GJ (1978) Characterization of the extracellular, water-insoluble oc-d- glucans of oral streptococci by methylation analysis, and by enzymatic synthesis and degradation. Carbohydr Res 66:245–264

    Article  CAS  Google Scholar 

  • Hartley DL, Jones KR, Tobian J A, LeBlanc DJ, Macrina FL (1984) Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect Immun 45:13–17

    PubMed  CAS  Google Scholar 

  • Hay DI, Gibbons RJ, Spinell DN (1971) Characteristics of some high molecular weight constituents with bacterial aggregating activity from whole saliva and dental plaque. Caries Res 5:111–123

    Article  PubMed  CAS  Google Scholar 

  • Hillman JD (1978) Lactate dehydrogenase mutants of Streptococcus mutans: isolation and preliminary characterization. Infect Immun 21:206–212

    PubMed  CAS  Google Scholar 

  • Hillman JD, Johnson KP, Yaphe BI (1984) Isolation of a Streptococcus mutans strain producing a novel bacteriocin. Infect Immun 44:141–144

    PubMed  CAS  Google Scholar 

  • Hirasawa M, Kiyono H, Shiota T, Hull RA, Curtiss R III, Michalek SM, McGhee JR (1980) Virulence of Streptococcus mutans: restoration of pathogenesis of a glucosyltransferase-defective mutant (C4). Infect Immun 27:915–921

    PubMed  CAS  Google Scholar 

  • Hoiseth SK, Stocker BAD (1982) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239

    Article  Google Scholar 

  • Holt RC, Abiko Y, Saito S, Smorawinska M, Hansen JB, Curtiss R III (1982) Streptococcus mutans genes that code for extracellular proteins in Eschericha coli K-12. Infect Immun 38:147–156

    PubMed  CAS  Google Scholar 

  • Hughes M, MacHardy SM, Sheppard AJ (1983) Manufacture and control of a dental caries vaccine for parenteral administration to man. In: Doyle RJ, Ciardi JE (eds) Glucosyltransferases, glucans, sucrose, and dental caries. Sp suppl chemical senses. IRL, Washington DC, pp 259–264

    Google Scholar 

  • Ikeda T, Iwanama T, Hirasawa M, Watanabe C, McGhee JR, Shiota T (1982) Purification and certain properties of a bacteriocin from Streptococcus mutans. Infect Immun 35:861–868

    PubMed  CAS  Google Scholar 

  • Jagusztyn-Krynicka EK, Smorawinska M, Curtiss R III (1982) Expression of Streptococcus mutans aspartate-semialdehyde dehydrogenase gene c brad into plasmid pBR322. J Gen Microbiol 128:1135–1145

    PubMed  CAS  Google Scholar 

  • Johnson KP, Hillman JD (1980 a) Acid retention properties of LDH-deficient mutant plaque. J Dent Res 59:464

    Google Scholar 

  • Johnson KP, Hillman JD (1980 b) Colonization of teeth by LDH-deficient mutants of Streptococcus mutans. J Dent Res 59:465

    Google Scholar 

  • Kashket S, Donaldson CS (1972) Saliva-induced aggregation of oral Streptococci. J Bacteriol 112:1127–1133

    PubMed  CAS  Google Scholar 

  • Katamaya A, Ishikawa E, Ando T, Arai T (1978) Isolation of plasmid DNA from naturally occurring strains of Streptococcus mutans. Arch Oral Biol 23:1099–1103

    Article  Google Scholar 

  • Koga T, Hamada S, Murakawa S, Endo A (1982) Effect of a glucosyltransferase inhibitor on glucan synthesis and cellular adherence of Streptococcus mutans. Infect Immun 38:882–886 Kuramitsu HK (1976) Properties of a mutant of Streptococcus mutans altered in glucosyltransferase activity. Infect Immun 13:345–353

    Google Scholar 

  • Kuramitsu HK, Trapa V (1984) Genetic exchange between oral streptococci during mixed growth. J Gen Microbiol 130:2497–2500

    PubMed  CAS  Google Scholar 

  • Lacks SA (1977) Binding and entry of DNA in bacterial transformation. In: Ressig JL (ed) Microbial interactions, series B. Receptors and recognition, vol 3. Chapman and Hall, London, pp 177- 232

    Google Scholar 

  • Larrimore S, Murchison HH, Shiota T, Michalek SM, Curtiss R III (1983) In vitro and in vivo complementation of Streptococcus mutans mutants defective in adherence. Infect Immun 42:558–566

    PubMed  CAS  Google Scholar 

  • LeBlanc DJ, Hawley RJ, Lee LN, St. Martin EJ (1978) “Conjugal” transfer of plasmid DNA among oral streptococci. Proc Natl Acad Sci USA 75:3484–3487

    Article  PubMed  CAS  Google Scholar 

  • Loenen WAM, Brammar WJ (1980) A bacteriophage lambda vector for cloning large DNA fragments made with several restriction enzymes. Gene 20:249–259

    Article  Google Scholar 

  • Liljemark WF, Schauer SV (1975) Studies on the bacterial components which bind Streptococcus sanguis and Streptococcus mutans to hydroxyapatite. Arch Oral Biol 20:609–615

    Article  PubMed  CAS  Google Scholar 

  • Macrina FL, Scott CL (1978) Evidence for a disseminated plasmid in Streptococcus mutans. Infect Immun 20:296–302

    PubMed  CAS  Google Scholar 

  • Macrina FL, Reider JL, Virgili SS, Kopecko DJ (1977) Survey of the extrachromosomal gene pool of Streptococcus mutans. Infect Immun 17:215–226

    PubMed  CAS  Google Scholar 

  • Macrina FL, Jones KR, Wood PH (1980) Chimeric streptococcal plasmids and their use as molecular cloning vehicles in Streptococcus sanguis (Challis). J Bacteriol 143:1425–1435

    Google Scholar 

  • Macrina FL, Jones KR, Welch RA (1981) Transformation of Streptococcus sanguis with monomeric pVA736 plasmid deoxyribonucleic acid. J Bacteriol 146:826–830

    PubMed  CAS  Google Scholar 

  • Macrina FL, Jones KR, Tobian JA, Evans RP (1982a) Molecular cloning in the streptococci. In: Hollaender A, DeMoss R, Kaplan S, Konisky J, Savage D, Wolfe R (eds) Genetic engineering of micro-organisms for chemicals. Plenum, New York, pp 195–210

    Google Scholar 

  • Macrina FL, Tobian J A, Jones KR, Evans RP, Clewell DB (1982 b) A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene 19:345–353

    Article  Google Scholar 

  • Macrina FL, Evans RP, Tobian J A, Hartley DL, Clewell DB, Jones KR (1983) Novel shuttle plasmid vehicles for Escherichia-Streptococcus cloning. Gene 25:145–150

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • McBride BD, Song M, Krasse B, Olsson J (1984) Biochemical and immunological differences between hydrophobic and hydrophilic strains of Streptococcus mutans. Infect Immun 44:68–75

    PubMed  CAS  Google Scholar 

  • McCabe MM, Koga T, Inoue M, Freedman ML, Hamelik RM (1983) Glucosyltransferase isozymes from Streptococcus mutans. In: Doyle RJ, Ciardi JE (eds) Glucosyltransferases, glucans, sucrose and dental caries. IRL, Washington DC, pp 73–82

    Google Scholar 

  • Mestecky J, McGhee JR, Arnold RR, Michalek SM, Prince SJ, Babb JL (1978) Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest 61:731–737

    Article  PubMed  CAS  Google Scholar 

  • Michalek SM, Shiota T, Ikeda T, Navia JM, McGhee JR (1975) Virulence of Streptococcus mutans: biochemical and pathogenic characteristics of mutant isolates. Proc Soc Exp Biol Med 150:498–502

    PubMed  CAS  Google Scholar 

  • Michalek SM, McGhee JR, Mestecky J, Arnold RR, Bozzo L (1976) Ingestion of Streptococcus mutans induces secretory IgA and caries immunity. Science 192:1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Michalek SM, McGhee JR, Babb JL (1978) Effective immunity to dental caries: dose-dependent studies of secretory immunity to oral administration of Streptococcus mutans to rats. Infect Immun 19:217–224

    PubMed  CAS  Google Scholar 

  • Mirth DB, Miller CJ, Kingman A, Bowen WH (1981) Binding of salivary aggregating factors for Streptococcus mutans by concanavalin A and fructose-binding protein. Caries Res 15:1–8

    Article  PubMed  CAS  Google Scholar 

  • Morrissey PG, Dougan R, Russell B, Gilpin M (1985) Cloning of Streptococus mutans antigens in Escherichia coli K12 as an aid to the development of a dental caries vaccine. In: Vaccines 85: molecular and chemical basis of resistance to viral, bacterial, and parasitic diseases. Cold Spring Harbor Laboratory

    Google Scholar 

  • Mukasa H, Slade HD (1973) Mechanisms of adherence of Streptococcus mutans to smooth surfaces. I. The roles of insoluble dextran-levan synthetase enzymes and cell wall polysaccharide antigen in plaque formation. Infect Immun 8:555–562

    PubMed  CAS  Google Scholar 

  • Mukasa H, Slade HD (1974 a) The mechanism of adherence of Streptococcus mutans to smooth surfaces. II. The nature of the binding site and the adsorption of the dextran-levan synthetase enzymes on the cell wall surface of the streptococcus. Infect Immun 9:419–429

    PubMed  CAS  Google Scholar 

  • Mukasa H, Slade HD (1974b) Mechanism of the adherence of Streptococcus mutans to smooth surfaces. III. Purification and properties of the enzyme complex responsible for adherence. Infect Immun 10:1135–1145

    PubMed  CAS  Google Scholar 

  • Murchison HH, Larrimore S, Curtiss R III (1981) Isolation and characterization of Streptococcus mutans mutants defective in adherence and aggregation. Infect Immun 34:1044–1055

    PubMed  CAS  Google Scholar 

  • Murchison HH, Larrimore S, Hull S, Curtiss R III (1982) Isolation and characterization of Streptococcus mutans mutants with altered cellular morphology or chain length. Infect Immun 38:282–291

    PubMed  CAS  Google Scholar 

  • Murchison H, Barrett JF, Cardineau G, Curtiss R III (1985) Transformation of Streptococcus mutans with chromosomal and “shuttle” plasmid pYA629 DNA

    Google Scholar 

  • Murchison HH, Pollack J, Curtiss R III (1985 b) Isolation and characterization of mutants of Streptococcus mutans by enrichment with Persea americana agglutinan. ASM, Washington DC

    Google Scholar 

  • Newbrun E (1978) Cariology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Newman BM, White P Mohan SB, Cole J A (1980) Effect of dextran and ammonium sulfate on the reaction catalyzed by a glucosyltransferase complex from Streptococcus mutans. J Gen Microbiol 118:353–366

    PubMed  CAS  Google Scholar 

  • Ogier JA, Klein JP, Sommer P, Frank RM (1984) Identification and preliminary characterization of saliva-interacting surface antigens of Streptococcus mutans by immunoblotting, ligand blotting and immunoprecipitation. Infect Immun 45:107–112

    PubMed  CAS  Google Scholar 

  • Orland FJ (1959) A review of dental research using germfree animals. Ann NY Acad Sci 78:285–289

    Article  PubMed  CAS  Google Scholar 

  • Orstavik J, Orstavik D (1982) Influence of in vitro propagation on the adhesive qualities of Streptococcus mutans isolated from saliva. Acta Odontol Scand 40:57–63

    Article  PubMed  CAS  Google Scholar 

  • Perch B, Kiems E, Ravn T (1974) Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Path Microbiol Scand 28:357–370

    Google Scholar 

  • Perry D, Kuramitsu HK (1981) Genetic transformation of Streptococcus mutans. Infect Immun 32:1295–1297

    PubMed  CAS  Google Scholar 

  • Perry D, Wondrack LM, Kuramitsu HK (1983) Genetic transformation of putative cariogenic properties in Streptococcus mutans. Infect Immun 41:722–727

    PubMed  CAS  Google Scholar 

  • Pucci MJ, Macrina FL (1985) Cloned gtfA gene of Streptococcus mutans LM7 alters glucan synthesis in Streptococcus sanguis. Infect Immun 48:704–712

    PubMed  CAS  Google Scholar 

  • Robeson JP, Barletta RG, Curtiss R III (1983) Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli. J Bacteriol 152:211–221

    Google Scholar 

  • Rolla G, Inverson OJ, Bonesvoll P (1978) Lipoteichoic acid - the key to the adhesiveness of sucrose grown Streptococcus mutans. In: McGhee JR, Mestecky J, Babb JL (eds) Secretory immunity and infection, pp 607–618

    Google Scholar 

  • Roozen KJ, Fenwick RG Jr, Curtiss R III (1971) Synthesis of ribonucleic acid and protein inplasmid-containing minicells of Escherichia coli K-12. J Bacteriol 107:21–33

    PubMed  CAS  Google Scholar 

  • Russell MW, Bergmeier LA, Zanders ED, Lehner T (1980) Protein antigens of Streptococcus mutans: purification and properties of a double antigen and its protease-resistant components Infect Immun 28:486–493

    CAS  Google Scholar 

  • Russell RRB (1979) Wall-associated protein antigens of Streptococcus mutans. J Gen Microbiol 114:109–115

    PubMed  CAS  Google Scholar 

  • Russell RRB, Beighton D, Cohen B (1982) Immunization of monkeys (Macaca fascicularis) with antigens purified from Streptococcus mutans. Br Dent J 152:81–84

    Article  PubMed  CAS  Google Scholar 

  • Russell RRB, Donald AC, Douglas CWI (1983) Fructosyltransferase activity of a glucan-binding protein from Streptococcus mutans. J Gen Microbiol 129:3243–3250

    PubMed  CAS  Google Scholar 

  • Russell RRB, Coleman D, Dougan G (1985) Expression of a gene for glucan-binding protein from Streptococcus mutans in Escherichia coli. J Gen Microbiol 131:295–299

    PubMed  CAS  Google Scholar 

  • Schachtele CF, Mayo JA (1973) Phosphoenolpyruvate-dependent glucose transport in oral streptococci. J Dent Res 52:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Schachtele CF, Staat RH, Harlander SK (1975) Dextranases from oral bacteria: inhibition of water- insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans. Infect Immun 12:309–317

    PubMed  CAS  Google Scholar 

  • Shklair IL, Keene HJ (1976) Biochemical characterization and distribution of Streptococcus mutans in three diverse populations. In: Stiles HM, Loesche WJ, O’Brien TC (eds) Proceedings: microbial aspects of dental caries (a special supplement to microbiology abstracts, vol 3). Information Retrieval, Washington DC, pp 201–210

    Google Scholar 

  • Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor

    Google Scholar 

  • Laboratory, Cold Spring Harbor Slee AM, Tanzer JM (1979) Phosphoenolypruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449. Infect Immun 24:821–828

    Google Scholar 

  • Smith D, Taubman MA, Ebersole JL (1983) Antigenic relatedness of glucosyltransferases from Streptococcus mutans andStreptococcus sanguis. In: Doyle RJ, Ciardi JE (eds) Glucasyltransferases, glucans, sucrose and dental caries. Spec suppl chemical senses. IRL, Washington DC, pp 223–230

    Google Scholar 

  • Smorawinska M, Hsu JC, Hansen JB, Jagusztyn-Krynicka EK, Abiko Y, Curtiss R III (1983) Clustered genes for galactose metabolism from Streptococcus mutans cloned in Escherichia coli K-12. J Bacteriol 153:1095–1097

    PubMed  CAS  Google Scholar 

  • Staat RH, Schachtele CF (1974) Evaluation of dextranase production by the cariogenic bacterium Streptococcus mutans. Infect Immun 9:467–469

    PubMed  CAS  Google Scholar 

  • Staat RH, Langley SD, Doyle RJ (1980) Streptococcus mutans adherence: presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infect Immun 27:675–681

    PubMed  CAS  Google Scholar 

  • Stiles HM, Meyers R, Brunelle JA, Wittig AB (1976) Occurrence of Streptococcus mutans and Streptococcus sanguis in the oral cavity and feces of young children. In: Stiles HM, Loesche WJ, O’Brien TC (eds) Proceedings: microbial aspects of dental caries (a special supplement to microbiology abstracts, vol 1). Information retrieval, Washington DC, pp 187–199

    Google Scholar 

  • St. Martin EJ, Wittenberger CL (1979) Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infect Immun 24:865–868

    Google Scholar 

  • Takada K, Ikeda T, Mitsui I, Shiota T (1984) Mode of inhibitory action of a bacteriocin produced by Streptococcus mutans C3603. Infect Immun 44:370–378

    PubMed  CAS  Google Scholar 

  • Tanzer JM, Freedman ML, Woodiel RN, Eifert RL, Rinehimer LA (1976) Association of Streptococcus mutans virulence with synthesis of intracellular polysaccharide. In: Stiles HM, Loesche WJ, O’Brien TC (eds) Proceedings: microbial aspects of dental caries (a special supplement to microbiology abstracts, vol 3). Information Retrieval, Washington DC, pp 597–616

    Google Scholar 

  • Tanzer JM, Fisher J, Freedman ML (1982) Preemption of Streptococcus mutans 10449S colonization by its mutant 805. Infect Immun 35:138–142

    PubMed  CAS  Google Scholar 

  • Tobian J A, Macrina FL (1982) Helper plasmid cloning in Streptococcus sanguis: cloning of a tetracycline resistance determinant from the Streptococcus mutans chromosome. J Bacteriol 152:215–222

    PubMed  CAS  Google Scholar 

  • Tobian JA, Cline ML, Macrina FL (1984) Characterization and expression of a cloned tetracycline resistance determinant from the chromosome of Streptococcus mutans. J Bacteriol 160:556–563

    PubMed  CAS  Google Scholar 

  • Van de Rijn I, Bleiweis AS, Zabriskie JB (1976) Antigens in Streptococcus mutans cross-reactive with human heart muscle. J Dent Res 55 [Suppl C]: 59–64

    Google Scholar 

  • Walker GJ (1972) Some properties of a dextran glucosidase isolated from oral Streptococci and its use in studies of dextran synthesis. J Dent Res 51:409–414

    Article  PubMed  CAS  Google Scholar 

  • Walker GJ, Brown RA, Taylor C (1984) Activity of Streptococcus mutans a -d-glucosyltransferases released under various growth conditions. J Dent Res 63:397–400

    Article  PubMed  CAS  Google Scholar 

  • Weisz-Carrington P, Roux M, McWilliams M, Phillips-Quagliata JM, Lamm ME (1979) Organ and isotype distribution of plasma cells producing specific antibody after oral immunization, evidence for a generalized secretory immune system. J Immunol 123:1705–1708

    PubMed  CAS  Google Scholar 

  • Westergren G, Emilson C-G (1983) Prevalence of transformable streptococcus mutans in human dental plaque. Infect Immun 41:1386–1388

    PubMed  CAS  Google Scholar 

  • Westergren G, Olsson J (1983) Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro. Infect Immun 40:432–435

    PubMed  CAS  Google Scholar 

  • Youngman PJ, Perkins JB, Losick R (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with the Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci USA 80:2305–2309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Curtiss, R. (1985). Genetic Analysis of Streptococcus mutans Virulence. In: Goebel, W. (eds) Genetic Approaches to Microbial Pathogenicity. Current Topics in Microbiology and Immunology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70586-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70586-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70588-5

  • Online ISBN: 978-3-642-70586-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics