Skip to main content

Routes of Exposure to Humans and Bioavailability

Group Report

  • Conference paper
Changing Metal Cycles and Human Health

Abstract

There are many pathways or routes by which humans are exposed to metallic compounds, and these are changing as our society uses more or less of the metal or changes the chemical form of the metal in the environment (8,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, R. 1983. Report on reference materials and standard solutions. J. Assoc. Off. Anal. Chem. 66: 335–337.

    Google Scholar 

  2. Alvarez, R.; Rasberry, S.D.; and Uriano, G.A. 1982. NBS standard reference materials: update 1982. Anal. Chem. 54: 1226A-1244A.

    Article  CAS  Google Scholar 

  3. Bernhard, M.; Buffoni, G.; and Renzoni, A. 1983. Mercury in the Mediterranean Tuna. Why is their level higher than in Atlantic Tuna? A model. Thalassia Jugoslavica, in press.

    Google Scholar 

  4. Bowen, H.J.M. 1979. Environmental chemistry of the elements. New York: Academic Press.

    Google Scholar 

  5. Curtis, E.H.; Beauchamp, J.J.; and Blaycock, B.G. 1977. Application of various mathematical models to data from the uptake of methyl mercury in bluegill sunfish. Ecol. Model. 3:127–284.

    Article  Google Scholar 

  6. Fagestrom, T., and Asell, B. 1973. Methyl mercury accumulation in an aquatic food chain. Ambio 2: 164–171.

    Google Scholar 

  7. Gladney, E.S. 1980. Compilation of elemental concentration data for NBS biological and environmental standard reference materials. Report LA-8438-MS, Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  8. Hemphill, D.D., ed. Trace Substances in Environmental Health (Series). Proceedings of annual conferences held at the University of Missouri-Columbia. Columbia, MO: University of Missouri Press.

    Google Scholar 

  9. ISO Central Secretariat. 1980. REMCO Directory. Geneva, Switzerland: ISO.

    Google Scholar 

  10. Jorgensen, S.E. 1979. Modelling the distribution and effect of heavy metals in an aquatic ecosystem. Ecol. Model. 6: 199–222.

    Article  Google Scholar 

  11. Management and Control of Heavy Metals in the Environment (Series). Proceedings of Biennial International Conferences. Edinburgh: CEP Consultants Ltd.

    Google Scholar 

  12. Seip, K.L. 1979. A mathematical model for the uptake of heavy metals in benthic algae. Ecol. Model. 6: 183–197.

    Article  CAS  Google Scholar 

  13. Venugopal, B., and Luckey, T.D. 1978. Metal Toxicity in Mammals, vols. 1 and 2. New York: Plenum Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Jaworski, J.F. et al. (1984). Routes of Exposure to Humans and Bioavailability. In: Nriagu, J.O. (eds) Changing Metal Cycles and Human Health. Dahlem Workshop Reports, Life Sciences Research Report, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69314-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69314-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69316-8

  • Online ISBN: 978-3-642-69314-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics