Skip to main content

Fungal Glucans — Structure and Metabolism

  • Chapter
Plant Carbohydrates II

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / B))

Abstract

Glucans constitute important structural or skeletal components of the cell envelope of yeasts and filamentous fungi. Isolation of individual glucan components and elucidation of their chemical structures have presented enormous difficulties. Early investigators generally subjected whole cells of baker’s or brewer’s yeast to more or less drastic treatments with alkali and acid to obtain cell wall glucan residues. It is now recognized that some glucans are extracted by these treatments and their contribution to the cell wall structure was overlooked. In addition, chemical degradation of some polysaccharides occurred as a result of heating with alkali and acids. Thirdly, as will be discussed later on, it was not recognized until the last decade that the alkali-insoluble glucan of baker’s yeast actually consists of two different polysaccharides that are difficult to separate. As a consequence, the value of the early structural investigations on yeast “glucan” was greatly diminished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-El-Al ATH, Phaff HJ (1968) Exo-β-glucanases in yeast. Biochem J 109: 347–360

    PubMed  CAS  Google Scholar 

  • Abd-El-Al ATH, Phaff HJ (1969) Purification and properties of endo-β-glucanases in the yeast Hanseniaspora valbyensis. Can J Microbiol 15: 697–701

    PubMed  CAS  Google Scholar 

  • Abercrombie M, Jones J, Lock M, Perry M, Stoodley R (1960) The polysaccharides of Cryptococcus laurentii (NRRL Y-1401). Can J Chem 38: 1617–1624

    CAS  Google Scholar 

  • Anderson FB, Millbank JW (1966) Protoplast formation and yeast cell wall structure. The action of enzymes of the snail Helix pomatia. Biochem J 99: 682–687

    PubMed  CAS  Google Scholar 

  • Arai M, Murao S (1978) Characterisation of oligosaccharides from an enzymatic hydrolysate of red yeast cell walls by lytic enzyme. Agric Biol Chem 42: 1651–1659

    CAS  Google Scholar 

  • Arai M, Lee TH, Murao S (1978) Substrate specificity of the Penicillium lilacinum enzyme lytic to the cell wall of Rhodotorula glutinis and the structure of the Rhodotorula cell wall glucomannan. Curr Microbiol 1: 185–188

    CAS  Google Scholar 

  • Arnold WN (1972) The structure of the yeast cell wall. Solubilization of a marker enzyme, β-fructofuranosidase, by the autolytic system. J Biol Chem 247: 1161–1167

    PubMed  CAS  Google Scholar 

  • Aronson JM (1965) The cell wall. In: Ainsworth GC, Sussman AS (eds) The fungi, vol I. Academic Press, London New York, pp 49–76

    Google Scholar 

  • Bacon JSD (1973) In: Villanueva JR, Garcia-Acha I, Gascon S, Uruburu F (eds) Yeast mould and plant protoplasts. Academic Press, London New York, pp 61–103

    Google Scholar 

  • Bacon JSD, Jones D, Farmer VC, Webley DM (1968) The occurrence of α-(1→3)-glucan in Cryptococcus, Schizosaccharomyces and Polyporus species, and its hydrolysis by a streptomycete culture filtrate lysing cell walls of Cryptococcus. Biochim Biophys Acta 158: 313–315

    PubMed  CAS  Google Scholar 

  • Bacon JSD, Farmer VC, Jones D, Taylor IF (1969) The glucan components of the cell wall of baker’s yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem J 114: 557–567

    PubMed  CAS  Google Scholar 

  • Bacon JSD, Gordon AH, Jones D, Taylor IF, Webley DM (1970) The separation of β-glucanases produced by Cytophaga johnsonii and their role in the lysis of yeast cell walls. Biochem J 120: 67–78

    PubMed  CAS  Google Scholar 

  • Bálint S, Farkaš V, Bauer S (1976) Biosynthesis of β-glucans catalysed by a particulate enzyme preparation from yeast. FEBS Lett 64: 44–47

    PubMed  Google Scholar 

  • Barras DR (1972) A β-glucan endo-hydrolase from Schizosaccharomyces pombe and its role in cell wall growth. Antonie van Leeuwenhoek J Microbiol Serol 38: 65–80

    CAS  Google Scholar 

  • Barras DR, Moore AE, Stone BA (1969) Enzyme-substrate relationships among β-glucan hydrolyases. Adv Chem Ser 95: 105–138

    CAS  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis and taxonomy of fungi. Annu Rev Microbiol 22: 87–107

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1973) Fundamental aspects of hyphal morphogenesis. In: Ashworth JM, Smith JE (eds) Microbial differentiation. Univ Press, Cambridge, pp 245–267

    Google Scholar 

  • Bartnicki-Garcia S, McMurrough I (1971) Biochemistry of morphogenesis in yeasts. In: Rose AH, Harrison JS (eds) The yeasts — physiology and biochemistry of yeasts, vol II. Academic Press, London New York, pp 441–491

    Google Scholar 

  • Bauer H, Bush DA, Horisberger M (1972) Use of the exo-β-1,3-glucanase from Basidiomycete QM 806 in studies on yeast. Experientia 28: 11–13

    PubMed  CAS  Google Scholar 

  • Bell DJ, Northcote DH (1950) The structure of a cell wall polysaccharide of baker’s yeast. J Chem Soc 1944–1947

    Google Scholar 

  • Beran F (1968) Budding of yeast cells. Their scars and aging. Adv Microb Physiol 2: 143–171

    Google Scholar 

  • Bhavanandan VP, Bouveng HO, Lindberg B (1964) Polysaccharides from Polyporus giganteus. Acta Chem Scand 18: 504–512

    CAS  Google Scholar 

  • Bishop CT, Blank F, Gardner PE (1960) The cell wall polysaccharides of Candida albicans: glucan, mannan and chitin. Can J Chem 38: 869–881

    Google Scholar 

  • Bjorndal H, Lindberg B (1970) Polysaccharides elaborated by Polyporus fomentarius and Polyporus igniarius. Carbohydr Res 12: 29–35

    CAS  Google Scholar 

  • Bouveng HO, Kiessling H, Lindberg B, McKay J (1963) Polysaccharides elaborated by Pullularia pullulans. III Polysaccharides synthesised from xylose solutions. Acta Chem Scand 17: 1351–1356

    CAS  Google Scholar 

  • Bowden JK, Hodgson B (1970) Evidence against the presence of fibers or chemically distinct layers in the cell wall of Saccharomyces. Antonie von Leeuwenhoek J Microbiol Serol 36: 81–108

    CAS  Google Scholar 

  • Brock TD (1964) Enzyme synthesis during conjugation in the yeast Hansenula wingei. J Cell Biol 23: 15A

    Google Scholar 

  • Brock TD (1965) β-Glucanase of yeast. Biochem Biophys Res Commun 19:623–629

    PubMed  CAS  Google Scholar 

  • Brown JP (1971) Susceptibility of the cell walls of some yeasts to lysis by the enzymes of Helix pomatia. Can J Microbiol 17: 205–208

    PubMed  CAS  Google Scholar 

  • Brown RG, Hanic LA, Hsiao M (1973) Structure and chemical composition of yeast chlamydospores of Aureobasidium pullulans. Can J Microbiol 19: 163–168

    PubMed  CAS  Google Scholar 

  • Buck KW, Chen AW, Dickerson AG, Chain EB (1968) Formation and structure of extracellular glucans produced by Claviceps species J Gen Microbiol 51: 337–352

    PubMed  CAS  Google Scholar 

  • Bull AT (1970) Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63: 75–94

    PubMed  CAS  Google Scholar 

  • Bull AT, Chesters CGC (1966) The biochemistry of laminarin and the nature of laminarinase. Adv Enzymol 28: 325–364

    PubMed  CAS  Google Scholar 

  • Bush DA, Horisberger M (1972) Structure of a β-d-glucan from the mycelial wall of Basidiomycete QM 806. Carbohydr Res 22: 361–367

    PubMed  CAS  Google Scholar 

  • Bush DA, Horisberger M, Horman I, Wursch P (1974) The wall structure of Schizosaccharomyces pombe. J Gen Microbiol 81: 199–206

    PubMed  CAS  Google Scholar 

  • Cabib E, Ulane R, Bowers B (1974) A molecular model for morphogenesis: the primary septum of yeast. Cun Top Cell Regul 6: 1–32

    Google Scholar 

  • Cassone A, Kerridge D, Gale EF (1979) Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol 110: 339–349

    PubMed  CAS  Google Scholar 

  • Catley BJ (1979) Pullulan synthesis by Aureobasidium pullulans. In: Berkeley RCW, Gooday GW, Elwood DC (eds) Microbial polysaccharides and polysaccharidases. Soc Gen Microbiol. Academic Press, London New York, pp 69–84

    Google Scholar 

  • Catley BJ, Kelly DJ (1975) Metabolism of trehalose and pullulan during the growth cycle of Aureobasidium pullulans. Biochem Soc Trans 3: 1079–1081

    CAS  Google Scholar 

  • Chattaway FW, Chenolikar S, O’Reilly J, Barlow AJE (1976) Changes in the cell surface of the dimorphic forms of Candida albicans by treatment with hydrolytic enzymes. J Gen Microbiol 95: 335–347

    CAS  Google Scholar 

  • Chesters CGC, Bull AT (1963 a) The enzymic degradation of laminarin. I. The distribution of laminarinase among microorganisms. Biochem J 86: 28–31

    PubMed  CAS  Google Scholar 

  • Chesters CGC, Bull AT (1963 b) The enzymic degradation of laminarin. 2. The multicomponent nature of fungal laminarinases. Biochem J 86: 31–38

    PubMed  CAS  Google Scholar 

  • Clarke AE, Stone BA (1963) Chemistry and biochemistry of β-(1→3)-glucans. Rev Pure Appl Chem 13: 134–156

    CAS  Google Scholar 

  • Cortat M, Matile P, Wiemken A (1972) The isolation of glucanase-containing vesicles from budding yeast. Arch Microbiol 82: 189–205

    CAS  Google Scholar 

  • Crandall M, Egel R, Mackay VL (1977) Physiology of mating in three yeasts. Adv Microb Physiol 15: 307–398

    PubMed  CAS  Google Scholar 

  • Davis TE, Domer JE, Li YT (1977) Cell wall studies of Histoplasma capsulatum and Blastomyces dermatitidis using autologous and heterologous enzymes. Infect Immun 15: 978–987

    PubMed  CAS  Google Scholar 

  • Del Rey FD, Garcia-Acha I, Nombela C (1979) The regulation of β-glucanase synthesis in fungi and yeast. J Gen Microbiol 110: 83–89

    Google Scholar 

  • de Vries OMH, Wessels JGH (1972) Release of protoplasts from Schizophyllum commune by a lytic enzyme from Trichoderma viride. J Gen Microbiol 73: 13–22

    Google Scholar 

  • Doi K, Doi A, Fukui T (1973) Purification and properties of a lytic β-glucanase from an Arthrobacter bacterium. Agric Biol Chem 37: 1619–1627

    CAS  Google Scholar 

  • Doi K, Doi A, Ozaki T, Fukui T (1976) Further studies on the heterogeneity of the lytic activity for isolated yeast cell wall of the components of an Arthrobacter glucanase system: Properties of the two components of a β-1,3-glucanase. Agric Biol Chem 40: 1355–1362

    CAS  Google Scholar 

  • Dominguez JB, Goni FM, Uruburu F (1978) The transition from yeast-like to chlamydospore cell in Pullularia pullulans. J Gen Microbiol 108: 111–117

    CAS  Google Scholar 

  • Ebert E, Zenk MH (1967) Luteic acid and islandic acid, composition and structure. Phytochemistry 6: 309–312

    CAS  Google Scholar 

  • Eddy AA, Woodhead JS (1968) An alkali-soluble glucan fraction from the cell walls of the yeast Saccharomyces carlsbergensis. Fed Eur Biochem Soc Let 1: 67–68

    CAS  Google Scholar 

  • Elorza MV, Ruiz EM, Villanueva JR (1966) Production of yeast cell wall lytic enzymes on a semi-defined medium by a Streptomyces. Nature (London) 210: 442–443

    CAS  Google Scholar 

  • Evans RB, Manners DJ (1971) Observations on the purity of some glycogen preparations. Biochem J 125: 31

    Google Scholar 

  • Farkas V (1979) Biosynthesis of cell walls of fungi. Microbiol Rev 43: 117–144

    PubMed  CAS  Google Scholar 

  • Farkas V, Biely P, Bauer S (1973) Extracellular β-glucanases of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 321: 246–255

    PubMed  CAS  Google Scholar 

  • Fèvre M (1977) Subcellular localisation of glucanase and cellulase in Saprolegnia monoica Pringsheim. J Gen Microbiol 103: 287–295

    Google Scholar 

  • Fèvre M, Dumas C (1977) β-Glucan synthetases from Saprolegnia monoica. J Gen Microbiol 103: 297–306

    Google Scholar 

  • Fleet GH, Manners DJ (1976) Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J Gen Microbiol 94: 180–192

    PubMed  CAS  Google Scholar 

  • Fleet GH, Manners DJ (1977) The enzymic degradation of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae. J Gen Microbiol 98: 315–327

    PubMed  CAS  Google Scholar 

  • Fleet GH, Phaff HJ (1973) Effect of glucanases of yeast and bacterial origin on cell walls of Schizosaccharomyces species. In: Villanueva JR, Garcia-Acha I, Gascon S, Uruburu F (eds) Yeast, mould and plant protoplasts. Academic Press, London New York, pp 33–59

    Google Scholar 

  • Fleet GH, Phaff HJ (1974a) Glucanases in Schizosaccharomyces. Isolation and properties of the cell wall-associated β-(1→3)-glucanases. J Biol Chem 249: 1717–1728

    PubMed  CAS  Google Scholar 

  • Fleet GH, Phaff HJ (1974b) Lysis of yeast cell walls: Glucanases from Bacillus circulans WL-12. J Bacteriol 119:207–219

    PubMed  CAS  Google Scholar 

  • Fleet GH, Phaff HJ (1975) Glucanases in Schizosaccharomyces. Isolation and properties of an exo-β-glucanase from the cell extracts and culture fluid of Schizosaccharomyces japonicus var. versatilis. Biochim Biophys Acta 401: 318–332

    Google Scholar 

  • Flores-Carreon A, Gomez-Villaneuva A, San-Blas G (1979) β-(1→3)-Glucanase and dimorphism in Paracoccidioides brasiliensis. Antonie van Leeuwenhoek J Microbiol Serol 45: 265–274

    CAS  Google Scholar 

  • Foda MS, Phaff HJ (1970) The synthesis of starch-like compounds by Cryptococcus laurentii. In: Ahearn DH (ed) Recent trends in yeast research-Spectrum, vol I. Georgia State Univ, Atlanta Georgia pp 181–198

    Google Scholar 

  • Foda MS, Phaff HJ (1978) Properties and kinetics of glucan phosphorylase of the amylase-forming yeast Cryptococcus laurentii. Z Allg Mikrobiol 18: 95–106

    PubMed  CAS  Google Scholar 

  • Gorin PAJ, Spencer JFT (1968) Structural chemistry of fungal polysaccharides. Adv Carbohydr Chem 23: 367–114

    CAS  Google Scholar 

  • Gorin PAJ, Spencer JFT, MacKenzie S (1966) Estimated molecular weight of amylose from the yeast Rhodotorula peneaus. Can J Chem 44: 2087–2090

    CAS  Google Scholar 

  • Gunja-Smith Z, Smith EE (1974) Evidence for the periplasmic location of glycogen in Saccharomyces. Biochem Biophys Res Commun 56: 588–592

    PubMed  CAS  Google Scholar 

  • Gunja-Smith Z, Patil NB, Smith EE (1977) Two pools of glycogen in Saccharomyces. J Bacteriol 130: 818–825

    PubMed  CAS  Google Scholar 

  • Hellerqvist CG, Lindberg B, Samuelsson K (1968) Methylation analysis of pustulan. Acta Chem Scand 22: 2376–2377

    Google Scholar 

  • Hemmes DE, Kojima-Buddenhagen ES, Hohl HH (1972) Structure and enzymatic analysis of the spore wall layers in Dictyostelium discoideum. J Ultrastruct Res 41: 406–417

    PubMed  CAS  Google Scholar 

  • Hoffmann GC, Simson BW, Timell TE (1971) Structure and molecular size of pachyman. Carbohydr Res 20: 185–188

    PubMed  CAS  Google Scholar 

  • Horikoshi K (1973) In: Villanueva JR, Garcia-Acha I, Gascon S, Uruburu F (eds) Yeast, mould and plant protoplasts. Academic Press, London New York, pp 25–32

    Google Scholar 

  • Horisberger M, Lewis BA, Smith F (1972) Structure of a (1→3)-α-d-glucan (pseudonigeran) of Aspergillus niger NRRL 326 cell wall. Carbohydr Res 23: 183–188

    PubMed  CAS  Google Scholar 

  • Huotari F, Nelson T, Smith F, Kirkwood S (1968) Purification of an exo-β-d-1,3-glucanase from Basidiomycete species QM 806. J Biol Chem 243: 952–956

    PubMed  CAS  Google Scholar 

  • Jeanes A (1977) Dextrans and pullulans: Industrially significant α-d-glucans. In: Sandford PA, Laskin A (eds) Am Chem Soc Symp 45: 284–297

    Google Scholar 

  • Johnson J, Kirkwood S, Misaki A, Nelson TE, Scaletti JV, Smith F (1963) Structure of a new glucan. Chem Ind 20: 820–822

    Google Scholar 

  • Johnston IR (1965a) The composition of the celll wall of Aspergillus niger. Biochem J 96: 651–658

    PubMed  CAS  Google Scholar 

  • Johnston IR (1965 b) The partial acid hydrolysis of a highly dextrorotary fragment of the cell wall of Aspergillus niger. Isolation of the α-(1→3)-linked dextrin series. Biochem J 96: 659–664

    PubMed  CAS  Google Scholar 

  • Jones THD, de Renobales M, Pon N (1979) Cellulases released during the germination of Dictyostelium discoideum spores. J Bacteriol 137: 752–757

    PubMed  CAS  Google Scholar 

  • Kanetsuna F, Carbonell LM (1970) Cell wall glucans of the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol 101: 675–680

    PubMed  CAS  Google Scholar 

  • Kanetsuna F, Carbonell LM (1971) Cell wall composition of the yeast-like and mycelial forms of Blastomyces dermatitidis. J Bacteriol 106: 946–948

    PubMed  CAS  Google Scholar 

  • Kanetsuna FC, Carbonell M, Azuma I, Yamamura Y (1972) Biochemical studies on the thermal dimorphism of Paracoccidioides brasiliensis. J Bacteriol 110: 208–218

    PubMed  CAS  Google Scholar 

  • Kanetsuna F, Carbonell CM, Gill F, Azuma I (1974) Chemical and ultrastructural studies on the cell walls of the yeast-like and mycelial forms of Histoplasma capsulatum. Mycopathol Mycol Appl 54: 1–13

    PubMed  CAS  Google Scholar 

  • Kessler G, Nickerson WJ (1959) Glucomannan-protein complexes from cell walls of yeasts. J Biol Chem 234: 2281–2283

    PubMed  CAS  Google Scholar 

  • Kitamura K, Yamamoto Y (1972) Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys 153: 403–406

    PubMed  CAS  Google Scholar 

  • Kitamura K, Kaneko T, Yamamoto Y (1972) Lysis of viable yeast cells by enzymes of Arthrobacter luteus. I. Isolation of lytic strain and studies of its lytic activity. J Gen Appl Microbiol 18: 57–71

    CAS  Google Scholar 

  • Kopecká M, Phaff HJ, Fleet GH (1974) Demonstration of a fibrillar component in the cell wall of the yeast Saccharomyces cerevisiae and its chemical nature. J Cell Biol 62: 66–76

    PubMed  Google Scholar 

  • Korn ED, Northcote DH (1960) Physical and chemical properties of polysaccharides and glucoproteins of the yeast cell wall. Biochem J 75: 12–17

    PubMed  CAS  Google Scholar 

  • Kreger DR (1954) Observation on cell walls of yeast and some other fungi by X-ray diffraction and solubility tests. Biochim Biophys Acta 13: 1–9

    PubMed  CAS  Google Scholar 

  • Kritzman G, Chet I, Henis Y (1978) Localisation of β-(1→3)-glucanase in the mycelium of Sclerotium rolfsii. J Bacteriol 134: 470–475

    PubMed  CAS  Google Scholar 

  • Kröning A, Egel R (1974) Autolytic activities associated with conjugation and sporulation in fission yeast. Arch Microbiol 99: 241–249

    PubMed  Google Scholar 

  • Lachance MA, Villa TG, Phaff HJ (1977) Purification and partial characterisation of an exo-β-glucanase from the yeast Kluyveromyces aestuarii. Can J Biochem 55: 1001–1006

    PubMed  CAS  Google Scholar 

  • Lodder J (ed) (1970) The yeasts - a taxonomic study. North Holland Publ Co, Amsterdam, pp 1–1385

    Google Scholar 

  • López-Romero E, Ruiz-Herrera J (1977) Biosynthesis of β-glucans by cell free extracts from Saccharomyces cerevisiae. Biochim Biophys Acta 500: 372–384

    PubMed  Google Scholar 

  • Maddox IS, Hough JS (1971) Yeast glucanase and mannanase. J Inst Brew London 77: 44–47

    CAS  Google Scholar 

  • Mahadevan PR, Mahadkar UR (1970) Role of enzymes in growth and morphology of Neurospora crassa: cell-wall-bound enzymes and their possible role in branching. J Bacteriol 101: 941–947

    PubMed  CAS  Google Scholar 

  • Mahadevan PR, Tatum EL (1965) Relationship of the major constituents of the Neurospora crassa cell wall to wild-type and colonial morphology. J Bacteriol 90: 1073–1081

    PubMed  CAS  Google Scholar 

  • Mandels M (1975) Microbial sources of cellulases. In: Wilke CR (ed) Cellulose as a chemical and energy source. Wiley and Sons, New York, pp 81–105

    Google Scholar 

  • Mann JW, Heinz CE, Macmillan JD (1972) Yeast spheroplasts formed by cell wall degrading enzymes from Oerskovia sp. J Bacteriol 111: 821–824

    PubMed  CAS  Google Scholar 

  • Manners DJ, Meyer MT (1977) The molecular structure of some glucans from the cell walls of Schizosaccharomyces pombe. Carbohydr Res 57: 189–203

    CAS  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1973 a) The structure of a β-(1→3)-D-glucan from yeast cell walls. Biochem J 135: 19–30

    PubMed  CAS  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC, Bjorndal H, Lindberg B (1973 b) The structure of a β-(1→6)-D-glucan from yeast cell walls. Biochem J 135: 31–36

    PubMed  CAS  Google Scholar 

  • Manners DJ, Masson AJ, Patterson JC (1974) The heterogeneity of glucan preparations from the walls of various yeasts. J Gen Microbiol 80: 411–417

    PubMed  CAS  Google Scholar 

  • Marchant R, Smith DG (1968) Bud formation in S. cerevisiae and a comparison of the mechanism of cell division in other yeasts. J Gen Microbiol 53: 163–169

    PubMed  CAS  Google Scholar 

  • Marshall JJ (1974) Application of enzymic methods to the structural analysis of polysaccharides. Adv Carbohydr Chem Biochem 30: 257–353

    PubMed  CAS  Google Scholar 

  • Matile P, Cortat M, Wiemken A, Frey-Wyssling A (1971) Isolation of glucanase-containing particles from budding Saccharomyces cerevisiae. Proc Natl Acad Sci USA 68: 636–640

    PubMed  CAS  Google Scholar 

  • McMurrough I, Rose AH (1967) Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J 105: 189–203

    PubMed  CAS  Google Scholar 

  • Meyer MT, Phaff HJ (1977) Survey for α-(1→3)-glucanase activity among yeasts. J Bacteriol 131: 702–706

    PubMed  CAS  Google Scholar 

  • Mill PJ (1966) Phosphomannans and other components of flocculent and non-flocculent walls of Saccharomyces cerevisiae. J Gen Microbiol 44: 329–341

    PubMed  CAS  Google Scholar 

  • Miller MW, Yoneyama M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Bacteriol 26: 286–291

    Google Scholar 

  • Misaki A, Johnson J, Kirkwood S, Scaletti JV, Smith F (1968) Structure of the cell wall glucan of yeast (Saccharomyces cerevisiae). Carbohydr Res 6: 150–164

    CAS  Google Scholar 

  • Misaki A, Tsumuraya Y, Takaya S (1978) A new fungal α-d-glucan, elsinan, elaborated by Elsinoe leucospila. Agric Biol Chem 42: 491–493

    CAS  Google Scholar 

  • Mishra NC, Tatum EL (1972) Effect of L-sorbose on polysaccharide synthetases of Neurospora crassa. Proc Natl Acad Sci USA 69: 313–317

    PubMed  CAS  Google Scholar 

  • Moor H (1967) Endoplasmic reticulum as the initiation of bud formation in yeast (S. cerevisiae). Arch Mikrobiol 57: 135–146

    PubMed  CAS  Google Scholar 

  • Morris EO (1955) Seaweed as a source of yeast food. J Sci Food Agric 6: 611–621

    CAS  Google Scholar 

  • Mundkur B (1960) Electron microscopical studies of frozen-dried yeast (1) Localisation of polysaccharides. Exp Cell Res 20: 28–42

    PubMed  CAS  Google Scholar 

  • Nakajima T, Tamari K, Matsuda K, Tanaka H, Ogasawara N (1970) Studies on the cell wall of Piricularia oryzae. Part II. The chemical constituents of the cell wall. Agric Biol Chem 34: 553–560

    CAS  Google Scholar 

  • Nakajima T, Tamari K, Matsuda K, Tanaka H, Ogasawara N (1972) Studies on the cell wall of Piricularia oryzae. Part III. The chemical structure of the β-d-glucan. Agric Biol Chem 36: 11–17

    CAS  Google Scholar 

  • Nakamura N, Tanabe O (1963) Studies on an enzyme capable of splitting β-d-(1→6)-glucosidic linkage. Isolation of a lutease-producing microorganism and some properties of lutease. Agric Biol Chem 27: 80–87

    CAS  Google Scholar 

  • Namba H, Kuroda H (1974a) Studies on fungicides. X. Biosyntheses of β-glucan and chitin-like substance of cell wall from Cochliobolus miyabeamus. Chem Pharm Bull 22: 610–616

    Google Scholar 

  • Namba H, Kuroda H (1974 b) Studies on fungicides. XII. Biosyntheses of β-glucan and chitin-like substance of cell wall from Cochliobolus miyabeamus. Chem Pharm Bull 22: 1895–1901

    Google Scholar 

  • Nelson TE (1970) The hydrolytic mechanism of an exo-β-1,3-glucanase. J Biol Chem 245: 869–872

    PubMed  CAS  Google Scholar 

  • Nelson TE, Johnson J, Jantzen E, Kirkwood S (1969) Action pattern and specificity of an exo-β-(1→3)-D-glucanase from Basidiomycete species QM 806. J Biol Chem 244: 5972–5980

    PubMed  CAS  Google Scholar 

  • Nishikawa Y, Tanaka M, Shibata S, Fukuoka F (1970). Polysaccharides of lichens and fungi. IV. Antitumour active o-acetylated pustulan type glucans from the lichens of Umbilicaria species. Chem Pharm Bull 18: 1431–1434

    PubMed  CAS  Google Scholar 

  • Northcote DH (1953) The molecular structure and shapes of yeast glycogen. Biochem J 53: 348–352

    PubMed  CAS  Google Scholar 

  • Northcote DH, Horne RW (1952) The chemical composition and structure of the yeast cell wall. Biochem J 51: 232–236

    PubMed  CAS  Google Scholar 

  • Notario V, Villa TG, Benitez T, Villanueva JR (1975) β-Glucanases in the yeast Cryptococcus albidus var aerius. Production and separation of β-glucanases in a synchronous culture. Can J Microbiol 22: 261–268

    Google Scholar 

  • Notario V, Villa TG, Villanueva JR (1976) Purification of an exo-β-d-glucanase from cell-free extracts of Candida utilis. Biochem J 159: 555–562

    PubMed  CAS  Google Scholar 

  • Obata T, Fujioka K, Hara S, Namba Y (1977) The synergistic effects among β-1,3-glucanases from Oerskovia sp. CK on lysis of viable yeast cells. Agric Biol Chem 41: 671–677

    CAS  Google Scholar 

  • Patel GB, Ingledew WM (1975 a) The relationship of acid-soluble glycogen to yeast flocculation. Can J Microbiol 21: 1608–1613

    PubMed  CAS  Google Scholar 

  • Patel GB, Ingledew WM (1975 b) Glycogen — a physiological determinant of yeast flocculation. Can J Microbiol 21: 1614–1621

    PubMed  CAS  Google Scholar 

  • Peat S, Whelan WJ, Edwards TE (1958 a) Polysaccharides of baker’s yeast. Part II. Yeast glucan. J Chem Soc 3862–3868

    Google Scholar 

  • Peat S, Turvey JR, Evans JM (1958 b) Polysaccharides of baker’s yeast. Part III. The presence of 1: 6-linkages in yeast glucan. J Chem Soc 3868–3870

    Google Scholar 

  • Perlin AS, Taber WA (1963) A glucan produced by Claviceps purpurea. Can J Chem 41: 2278–2282

    CAS  Google Scholar 

  • Phaff HJ (1963) Cell wall of yeasts. Annu Rev Microbiol 17: 15–30

    PubMed  CAS  Google Scholar 

  • Phaff HJ (1971) Structure and biosynthesis of the yeast cell envelope. In: Rose AH, Harrison JS (eds) The yeasts - physiology and biochemistry of yeast, vol II. Academic Press, London New York, pp 135–210

    Google Scholar 

  • Phaff HJ (1977) Enzymatic yeast cell wall degradation. Adv Chem Ser No 160: 244–282

    CAS  Google Scholar 

  • Phaff HJ (1979) A retrospective and current view on endogenous β-glucanases in yeast. Advances in protoplast research. Proc 5th Int Protoplast Symp, Szeged, Hungary, July 9–14, 1979. Publ House Hung Acad Sci, pp 171–182

    Google Scholar 

  • Polacheck I, Rosenberger RF (1978) Distribution of autolysins in hyphae of Aspergillus nidulans: evidence for a lipid-mediated attachment to hyphal walls. J Bacteriol 135: 741–747

    PubMed  CAS  Google Scholar 

  • Poulain D, Tronchin G, Dubremetz JF, Biguet J (1978) Ultrastructure of the cell wall of Candida albicans blastospores : study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides. Ann Microbiol (Paris) 129: 141–153

    CAS  Google Scholar 

  • Ralph BJ, Bender J (1965) Isolation of two new polysaccharides from the cell wall of Polyporus tumulosus. Chem Ind 1181

    Google Scholar 

  • Ramsay AM, Douglas LJ (1979) Effects of phosphate limitation of growth on the cell wall and lipid composition of Saccharomyces cerevisiae. J Gen Microbiol 110: 185–191

    PubMed  CAS  Google Scholar 

  • Reese ET (1977) Degradation of polymeric carbohydrates by microbial enzymes. Recent Adv Phytochem 11: 311–367

    CAS  Google Scholar 

  • Reichelt B (1978) β-Glucanases in Schizosaccharomyces pombe. MSci Thesis, Univ New South Wales, Australia

    Google Scholar 

  • Roelofsen PA (1953) Yeast mannan, a cell wall constituent of baker’s yeast. Biochim Biophys Acta 10: 477–478

    PubMed  CAS  Google Scholar 

  • Rombouts FM, Phaff HJ (1976a) Lysis of yeast cell walls. Lytic β-(1→6)-glucanase from Bacillus circulans WL-12. Eur J Biochem 63: 109–120

    PubMed  CAS  Google Scholar 

  • Rombouts FM, Phaff HJ (1976b) Lysis of yeast cell walls. Lytic β-(1→3)-glucanases from Bacillus circulans WL-12. Eur J Biochem 63: 121–130

    PubMed  CAS  Google Scholar 

  • Rombouts FM, Fleet GH, Manners DJ, Phaff HJ (1978) Lysis of yeast cell walls: non-lytic and lytic (1→6)-β-d-glucanases from Bacillus circulans WL-12. Carbohydr Res 64: 237–249

    CAS  Google Scholar 

  • Rosness PA (1968) Cellulolytic enzymes during morphogenesis in Dictyostelium discoideum. J Bacteriol 96: 639–645

    PubMed  CAS  Google Scholar 

  • Rosness PA, Wright BE (1974) In vivo changes of cellulose, trehalose and glycogen during differentiation of Dictyostelium discoideum. Arch Biochem Biophys 164: 60–72

    PubMed  CAS  Google Scholar 

  • Saito H, Misaki A, Harada T (1968) A comparison of the structure of curdlan and pachyman. Agric Biol Chem 32: 1261–1269

    CAS  Google Scholar 

  • San-Blas G, Carbonell LM (1974) Chemical and ultrastructural studies on the cell walls of the yeast-like and mycelial forms of Histoplasma farciminosum. J Bacteriol 119: 602–611

    PubMed  CAS  Google Scholar 

  • Santamaria F, Fuensanta R, Lahoz R (1978) Extracellular glucan containing (1→3)-β-and (1→6)-β-inkages isolated from Monilinia fructigena. J Gen Microbiol 109: 287–293

    CAS  Google Scholar 

  • Santos T, Sanchez M, Villanueva JR, Nombela C (1978a) Regulation of the β-(1→3)-glucanase system in Penicillium italicum: glucose repression of the various enzymes. J Bacteriol 133: 465–471

    PubMed  CAS  Google Scholar 

  • Santos T, Villanueva JR, Nombela C (1978b) Regulation of β-(1→3)-glucanase synthesis in Penicillium italicum. J Bacteriol 133: 542–548

    PubMed  CAS  Google Scholar 

  • Santos T, Sanchez M, Villanueva JR, Nombela C (1979a) Derepression of β-(1→3)-glucanasesz in Penicillium italicum : localisation of the various enzymes and correlation with cell wall glucan mobilisation and autolysis. J Bacteriol 137: 6–12

    PubMed  CAS  Google Scholar 

  • Santos T, del Rey F, Code J, Villanueva JR, Nombela C (1979 b) Saccharomyces cerevisiae mutant defective in exo-1,3-β-glucanase production. J Bacteriol 139: 333–338

    PubMed  CAS  Google Scholar 

  • Sentandreu R, Northcote DH (1969) The formation of buds in yeast. J Gen Microbiol 55: 383–398

    Google Scholar 

  • Sentandreu R, Elorza MV, Villaneuva JR (1975) Synthesis of yeast wall glucan. J Gen Microbiol 90: 13–20

    PubMed  CAS  Google Scholar 

  • Shimoda C, Yanagishima N (1968) Strain dependence of the cell-expanding effect of β-1,3-glucanase in yeast. Physiol Plant 21: 1163–1169

    CAS  Google Scholar 

  • Shimoda C, Nasada Y, Yanagishima N (1967) Nucleic acid metabolism involved in auxin-induced elongation of yeast cells. Physiol Plant 20: 299–305

    CAS  Google Scholar 

  • Shimoda C, Yanagishima N (1971) Role of wall degrading enzymes in auxin-induced cell wall expansion in yeast. Physiol Plant 24: 46–50

    CAS  Google Scholar 

  • Sietsma JH, Wessels JGH (1977) Chemical of the hyphal wall of Schizophyllum commune. Biochim Biophys Acta 496: 225–239

    PubMed  CAS  Google Scholar 

  • Sietsma JH, Child JJ, Nesbitt LR, Haskins RH (1975) Chemistry and ultrastructure of the hyphal walls of Pythium acanthicum. J Gen Microbiol 86: 29–38

    Google Scholar 

  • Sone Y, Misaki A (1977) Structures of the cell wall polysaccharides of Tremella fuciformis. Agric Biol Chem 42: 763–777

    Google Scholar 

  • Tanaka H, Phaff HJ (1965) Enzymic hydrolysis of yeast cell wall. I. Isolation of wall decomposing organisms and separation and purification of lytic enzymes. J Bacteriol 89: 1570–1580

    PubMed  CAS  Google Scholar 

  • Tanaka H, Phaff HJ, Higgins LW (1966) Enzymatic hydrolysis of yeast cell walls. II. Susceptibilities of isolated cell walls and ascus walls of various yeasts to the actions of bacteriol endo-β-glucanases. Symp Yeast Protoplasts. Abh Dtsch Akad Wiss Berlin Kl Med 6:113–129, 353–357

    Google Scholar 

  • Tanaka H, Itakura K, Toda K (1978) Concerted-induction of β-glucanases of Bacillus circulans WL-12 in response to various yeast glucans. Agric Biol Chem 42: 1631–1636

    CAS  Google Scholar 

  • Taylor IEP, Cameron DS (1973) Preparation and quantitative analysis of fungal cell wall: strategy and tactics. Annu Rev Microbiol 27: 243–259

    PubMed  CAS  Google Scholar 

  • Tingle MA, Halvorson HO (1971) A comparison of β-glucanase and β-glucosidase in Saccharomyces lactis. Biochim Biophys Acta 250: 165–171

    PubMed  CAS  Google Scholar 

  • Tokunaga J, Bartnicki-Garcia S (1971) Cyst wall formation and endogenous carbohydrate ultilisation during synchronous encystment of Phytophthora palmivora zoospores. Arch Mikrobiol 70: 283–292

    Google Scholar 

  • Troy FA, Koffler H (1969) The chemistry and molecular architecture of the cell walls of Penicillium chrysogenum. J Biol Chem 244: 5563–5576

    PubMed  CAS  Google Scholar 

  • Villa TG, Phaff HJ (1980) Recovery of invertase and laminarinases from industrial waste broths of baker’s yeast. Eur J Appl Microbiol Biotechnol 9: 9–14

    CAS  Google Scholar 

  • Villa TG, Notario V, Villanueva JR (1975) β-Glucanases of the yeast Pichia polymorpha. Arch Microbiol 104: 201–206

    PubMed  CAS  Google Scholar 

  • Villa TG, Notario V, Benitez T, Villanueva JR (1976) Purification of an exo-(1→3)-β-glucanase from Candida utilis. Can J Biochem 54: 927–934

    PubMed  CAS  Google Scholar 

  • Villa TG, Lachance MA, Phaff HJ (1977) On the structure of the β-(1→3)-glucan component of the cell wall of baker’s yeast. FEMS Microbiol Lett 1: 317–319

    CAS  Google Scholar 

  • Villa TG, Lachance MA, Phaff HJ (1978) β-Glucanases of the yeast Kluyveromyces phaseolosporus: partial purification and characterisation. Exp Mycol 2: 12–25

    CAS  Google Scholar 

  • Villa TG, Notario V, Villanueva JR (1979) Occurrence of an endo-(1→3)-β-glucanase in culture fluids of the yeast Candida utilis. Biochem J 177: 107–114

    PubMed  CAS  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1966) Biosynthesis of β-1,3 and β-1,6-linked glucan by Phytophthora cinnamomi hyphal walls. Biochem Biophys Res Commun 24: 832–837

    PubMed  CAS  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1973) Novel phosphoglucans from the cytoplasm of Phytophthora palmivora and their selective occurrence in certain life cycle stages. J Biol Chem 248: 4112–4118

    PubMed  CAS  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1974) Mycolaminarans : storage (1→3)-β-d-glucans from the cytoplasm of the fungus Phytophthora palmivora. Carbohydr Res 37: 331–338

    CAS  Google Scholar 

  • Wang MC, Bartnicki-Garcia S (1976) Synthesis of β-1,3-glucan microfibrils by a cell-free extract from Phytophthora cinnamomi. Arch Biochem Biophys 175: 351–354

    PubMed  CAS  Google Scholar 

  • Wessels JGH (1969) A β-(1→6)-glucan glucanohydrolase involved in hydrolysis of cell-wall glucan in Schizophyllum commune. Biochim Biophys Acta 178: 191–193

    PubMed  CAS  Google Scholar 

  • Wessels JGH, Koltin Y (1972) R-glucanase activity and susceptibility of hyphal walls to degradation in mutants of Schizophyllum with disrupted nuclear migration. J Gen Microbiol 71: 471–175

    CAS  Google Scholar 

  • Wessels JGH, Niederpruem DJ (1967) Role of a cell-wall glucan-degrading enzyme in mating of Schizophyllum commune. J Bacteriol 94: 1594–1602

    PubMed  CAS  Google Scholar 

  • Wessels JGH, Kreger DR, Marchant R, Regensburg BA, de Vries OMH (1972) Chemical and morphological characterisation of the hyphal wall surface of the Basidiomycete Schizophyllum commune. Biochim Biophys Acta 273: 346–358

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Nagasaki S (1975) Purification, crystallisation and properties of an endo-β- (1→3)-glucanase from Rhizopus chinensis R-69 Agric Biol Chem 39: 2163–2169

    CAS  Google Scholar 

  • Yamamoto S, Shiraishi T, Nagasaki S (1972) A crystalline enzyme which degrades the cell wall of living yeast. Biochem Biophys Res Commun 46: 1802–1809

    PubMed  CAS  Google Scholar 

  • Yanagishima N (1963) Effect of auxin and anti-auxin on cell elongation in yeast. Plant Cell Physiol 4: 257–264

    CAS  Google Scholar 

  • Yu RJ, Bishop CT, Cooper FP, Blank F, Hasenclever HF (1967) Glucans from Candida albicans (serotype B) and from Candida parapsilosis. Can J Chem 45: 2264–2267

    CAS  Google Scholar 

  • Yuen S (1974) Pullullan and its application. Process Biochem 22: 7–9

    Google Scholar 

  • Zalokar M (1959) Growth and differentiation of Neurospora hyphae. Am J Bot 46: 602–609

    CAS  Google Scholar 

  • Zevenhuizen L, Bartnicki-Garcia S (1969) Chemical structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi. Biochemistry 8: 1496–1501

    PubMed  CAS  Google Scholar 

  • Zevenhuizen L, Bartnicki-Garcia S (1970) Structure and role of a soluble cytoplasmic glucan from Phytophthora cinnamomi. J Gen Microbiol 61: 183–188

    PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1971) Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim Biophys Acta 249: 506–514

    PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1972 a) Morphogenesis in Aspergillus nidulans. The significance of α-(1→3)-glucan of the cell wall and α-(1→3)-glucanase for cleistothecium development. Biochim Biophys Acta 273: 174–187

    PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1972 b) A new type of enzyme, an exo-splitting α-(1→3)-glucanase from non-induced cultures of Aspergillus nidulans. Biochim Biophys Acta 258: 541–547

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Fleet, G.H., Phaff, H.J. (1981). Fungal Glucans — Structure and Metabolism. In: Tanner, W., Loewus, F.A. (eds) Plant Carbohydrates II. Encyclopedia of Plant Physiology, vol 13 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68234-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68234-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68236-0

  • Online ISBN: 978-3-642-68234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics