Skip to main content

Wall Extensibility: Hormones and Wall Extension

  • Chapter
Book cover Plant Carbohydrates II

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / B))

Abstract

Plant cells can undergo striking amounts of cell elongation. For example, a cell initially 20 to 30 μ in length can end up over 2000 times as long (Bannon 1964). During elongation there must be a proportional increase in wall area. This increase occurs in one of three patterns. In algal rhizoids, fungal hyphae, root hairs, and pollen tubes (Green 1969) the wall increases in area only at the tip (tip growth). In bacteria (Fiedler and Glazer 1973), yeast (Gooday and Trinci 1980) and the red alga Griffithsia pacifica (Waaland et al. 1972) growth is restricted to only a part of the lateral wall (band growth); but in the majority of cells growth occurs throughout the whole lateral surface (Roelofsen 1965, Roland and Vian 1979). In this case (surface growth), growth involves an extension of wall already present as well as synthesis of new wall. As it is primarily surface growth which is controlled by plant hormones, further discussion of cell elongation will be restricted to cells which undergo this type of extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PA, Montague MJ, Tepfer M, Rayle DL, Ikuma H, Kaufman PB (1975) Effect of gibberellic acid on the plasticity and elasticity of Avena stem segments. Plant Physiol 56:757–760

    PubMed  CAS  Google Scholar 

  • Albersheim P (1976) The primary cell wall. In : Bonner J, Varner JE (eds) Plant Biochemistry, 3rd edn. Academic Press, New York, pp 225–274

    Google Scholar 

  • Baker DB, Ray PM (1965) Direct and indirect effects of auxin on cell wall synthesis in oat coleoptile tissue. Plant Physiol 40: 345–352

    PubMed  CAS  Google Scholar 

  • Bannon MW (1964) Tracheid size and anticlinal division in the cambium of Pseudotsuga. Can J Bot 42: 603–631

    Google Scholar 

  • Bates GW, Ray PM (1979) pH dependent release of polymers from isolated cell walls. Plant Physiol 63: S20

    Google Scholar 

  • Bonner J (1933) The action of plant growth hormones. J Gen Physiol 17: 63–76

    PubMed  CAS  Google Scholar 

  • Burke D, Kaufman P, McNeil M, Albersheim P (1974) The structure of plant cell walls. VI. A survey of the walls of suspension-cultured monocots. Plant Physiol 54: 109–115

    PubMed  CAS  Google Scholar 

  • Burström H (1964) Calcium, water conditions and growth of pea seedling stems. Physiol Plant 17: 207–219

    Google Scholar 

  • Burström H (1975) Growth, solute and water fluxes in the etiolated Pisum stem. Z Pflanzen-physiol 76: 339–352

    Google Scholar 

  • Burström H, Uhrström I, Wurscher R (1967) Growth, turgor, water potential and Young’s modulus in pea internodes. Physiol Plant 20: 213–231

    Google Scholar 

  • Cleland RE (1959) Effect of osmotic concentration on auxin-action and on irreversible and reversible expansion of the Avena coleoptile. Physiol Plant 12: 809–825

    Google Scholar 

  • Cleland RE (1960) Effect of auxin on loss of calcium from cell walls. Nature 185: 44

    CAS  Google Scholar 

  • Cleland RE (1967a) Extensibility of isolated cell walls: measurement and changes during cell elongation. Planta 74: 197–209

    CAS  Google Scholar 

  • Cleland RE (1967 b) A dual role of turgor pressure in auxin-induced cell elongation in Avena coleoptiles. Planta 77: 182–191

    CAS  Google Scholar 

  • Cleland RE (1971 a) Cell wall extension. Annu Rev Plant Physiol 22: 197–222

    CAS  Google Scholar 

  • Cleland RE (1971b) Mechanical behaviour of isolated Avena coleoptile walls subjected to constant stress. Plant Physiol 47: 805–811

    PubMed  CAS  Google Scholar 

  • Cleland RE (1977) The control of cell enlargement. In: Jennings DH (ed) Integration of activity in the higher plant. Soc Exp Biol Symp 31. Cambridge Press, Cambridge pp 101–115

    Google Scholar 

  • Cleland RE, Haughton PM (1971) The effect of auxin on stress relaxation of isolated Avena coleoptiles. Plant Physiol 47: 812–815

    PubMed  CAS  Google Scholar 

  • Cleland RE, Rayle DL (1972) Absence of auxin-induced stored growth in Avena coleoptiles and its implications concerning the mechanism of wall extension. Planta 106: 61–71

    CAS  Google Scholar 

  • Cleland RE, Rayle DL (1977) Reevaluation of the effect of calcium ions on auxin-induced elongation. Plant Physiol 60: 709–712

    PubMed  CAS  Google Scholar 

  • Cleland RE, Rayle DL (1978) Auxin, H+-excretion and cell elongation. Bot Mag Tokyo Spec Issue 1: 125–139

    CAS  Google Scholar 

  • Cleland RE, Thompson M, Rayle DL, Purves WK (1968) Differences in the effects of auxins and gibberellins on wall extensibility of cucumber hypocotyls. Nature 219: 510–511

    PubMed  CAS  Google Scholar 

  • Cooil B, Bonner J (1957) Effects of calcium and potassium ions on the auxin-induced growth of Avena coleoptile section. Planta 48: 696–723

    CAS  Google Scholar 

  • Courtney JS, Morré DJ (1980 a) Studies on the role of wall extensibility in the control of cell expansion. Bot Gaz 141: 56–62

    Google Scholar 

  • Courtney JS, Morré DJ (1980b) Studies on the chemical basis of auxin-induced cell wall loosening. Bot Gaz 141: 63–68

    Google Scholar 

  • Courtney JS, Morré DJ, Key JL (1967) Inhibition of RNA synthesis and auxin-induced cell wall extensibility and growth by actinomycin D. Plant Physiol 42: 434–439

    Google Scholar 

  • Darvill AG, Smith CJ, Hall MA (1978) Cell wall structure and elongation growth in Zea mays coleoptile tissue. New Phytol 80: 503–516

    CAS  Google Scholar 

  • Datko AH, Maclachlan GA (1968) IAA and synthesis of glucanases and pectic enzymes. Plant Physiol 43: 735–742

    PubMed  CAS  Google Scholar 

  • Digby J, Firn RD (1977) Some criticisms of the use of nojirimycin as a specific inhibitor of auxin-induced growth. Z Pflanzenphysiol 82: 355–362

    CAS  Google Scholar 

  • Evans ML (1974) Evidence against the involvement of galactosidase and glucosidase in auxin- or acid-stimulated growth. Plant Physiol 54: 213–215

    PubMed  CAS  Google Scholar 

  • Falk SO, Hertz CH, Virgin HI (1958) On the relation between turgor pressure and tissue rigidity. I. Experiments on resonance frequency and tissue rigidity. Physiol Plant 11: 802–817

    Google Scholar 

  • Fan DF, Maclachlan GA (1967) Massive synthesis of RNA and cellulase in the pea epicotyl in response to IAA, with or without concurrent cell division. Plant Physiol 42: 1114–1122

    PubMed  CAS  Google Scholar 

  • Ferry JD (1970) Viscoelastic properties of polymers, 2nd ed. Wiley, New York, p 671

    Google Scholar 

  • Fiedler F, Glazer L (1973) Assembly of bacterial cell walls. Biochem Biophys Acta 300: 467–485

    CAS  Google Scholar 

  • Fujihara S, Yamamoto R, Masuda Y (1978 a) Viscoelastic properties of plant cell walls. II. Effect of pre-extension rate on stress relaxation. Biorheology 15: 77–85

    PubMed  CAS  Google Scholar 

  • Fujihara S, Yamamoto R, Masuda Y (1978 b) Viscoelastic properties of plant cell walls. III. Hysteresis loop in the stress-strain curve at constant strain rate. Biorheology 15: 87–97

    Google Scholar 

  • Goldberg R (1977) On possible connections between auxin induced growth and cell wall glucanase activities. Plant Sci Lett 8: 233–242

    CAS  Google Scholar 

  • Gooday GW, Trinci APJ (1980) Wall structure and biosynthesis in fungi. Symp Soc Gen Microbiol 30: 207–252

    CAS  Google Scholar 

  • Goring H, Bleiss W, Schenk D, Kretschmer H (1978) Dependence of the detectability of stored growth on the elongation rates in IAA- and acid-induced elongation of wheat coleoptile section. Plant Cell Physiol 19:833–838

    Google Scholar 

  • Green PB (1969) Cell morphogenesis. Annu Rev Plant Physiol 20: 365–394

    Google Scholar 

  • Hager A, Menzel H, Krauss A (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100: 47–75

    CAS  Google Scholar 

  • Haughton PM, Sellen DB (1969) Dynamic mechanical properties of the cell walls of some green algae. J Exp Bot 20: 516–535

    Google Scholar 

  • Haughton PM, Sellen DB, Preston RD (1968) Dynamic mechanical properties of the cell walls of Nitella opaca. J Exp Bot 19: 1–12

    Google Scholar 

  • Heyn ANJ (1931) Der Mechanismus der Zellstreckung. Rec Trav Bot Néerl 28: 113–244

    Google Scholar 

  • Heyn ANJ (1933) Further investigations on the mechanism of cell elongation and the properties of the cell wall in connection with elongation. Protoplasma 19: 78–96

    Google Scholar 

  • Heyn ANJ (1970) Dextranase activity in coleoptiles of Avena. Science 167: 874–875

    PubMed  CAS  Google Scholar 

  • Huber DJ, Nevins DJ (1979) Autolysis of cell wall β-d-glucan in corn coleoptile. Plant Cell Physiol 20: 201–212

    CAS  Google Scholar 

  • Iwami S, Masuda Y (1973) Hydrogen-ion induced curvature in cucumber hypocotyls. Plant Cell Physiol 14: 757–762

    CAS  Google Scholar 

  • Jaccard M, Pilet PE (1979) Growth and rheological changes of collenchyma cells: the fusicoccin effect. Plant Cell Physiol 20: 1–7

    CAS  Google Scholar 

  • Jacobs M, Ray PM (1975) Promotion of xyloglucan metabolism by acid pH. Plant Physiol 56: 373–376

    PubMed  CAS  Google Scholar 

  • Johnson KD, Daniels D, Dowler MJ, Rayle DL (1974) Activiation of Avena coleoptile cell wall glycosidases by hydrogen ions and auxin. Plant Physiol 53: 224–228

    PubMed  CAS  Google Scholar 

  • Kamisaka S, Sano H, Katsumi M, Masuda Y (1972) Effects of cyclic-AMP and gibberellic acid on lettuce hypocotyl elongation and mechanical properties of its cell wall. Plant Cell Physiol 12: 167–174

    Google Scholar 

  • Katsumi M, Kazama H (1978) Gibberellin control of cell elongation in cucumber hypocotyl sections. Bot Mag Tokyo Spec Issue 1: 141–158

    CAS  Google Scholar 

  • Katz M, Ordin L (1967) A cell wall polysaccharide-hydrolyzing enzyme system in Avena sativa L coleoptiles. Biochem Biophys Acta 141: 126–134

    PubMed  CAS  Google Scholar 

  • Kawamura H, Kamisaka S, Masuda Y (1976) Regulation of lettuce hypocotyl elongation by gibberellic acid. Correlation between cell elongation, stress-relaxation properties of the cell walls and wall polysaccharide content. Plant Cell Physiol 17: 23–34

    CAS  Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51: 188–197

    PubMed  CAS  Google Scholar 

  • Labovitch JM, Ray PM (1974 a) Turnover of cell wall polysaccharide in elongating pea stem sections. Plant Physiol 53: 669–673

    Google Scholar 

  • Labovitch JM, Ray PM (1974b) Relationship between promotion of xyloglucan metabolism and induction of elongation by IAA. Plant Physiol 54: 499–502

    Google Scholar 

  • Lockhart JA (1960) Intracellular mechanisms of growth inhibition by radiant energy. Plant Physiol 35: 129–135

    PubMed  CAS  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8: 264–275

    PubMed  CAS  Google Scholar 

  • Lockhart JA (1967) Physical nature of irreversible deformation of plant cells. Plant Physiol 42: 1545–1552

    PubMed  CAS  Google Scholar 

  • Loescher W, Nevins DJ (1972) Auxin-induced changes in Avena coleoptile cell wall composition. Plant Physiol 50: 556–563

    PubMed  CAS  Google Scholar 

  • Loescher WH, Nevins DJ (1973) Turgor-dependent changes in Avena coleoptile cell wall composition. Plant Physiol 52: 248–251

    PubMed  CAS  Google Scholar 

  • Maclachlan GA (1977) Cellulose metabolism and cell growth. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, pp 13–20

    Google Scholar 

  • McNeil M, Albersheim P, Taiz L, Jones RL (1975) The structure of plant cell walls. VII. Barley aleurone cells. Plant Physiol 55: 64–68

    PubMed  CAS  Google Scholar 

  • Marré E (1979) Fusicoccin: a tool in plant physiology. Annu Rev Plant Physiol 30: 273–288

    Google Scholar 

  • Masuda Y (1969) Auxin-induced cell expansion in relation to cell wall extensibility. Plant Cell Physiol 10: 1–9

    CAS  Google Scholar 

  • Masuda Y (1968) Auxin-induced cell wall loosening. Bot Mag Tokyo Spec Issue 1: 103–123

    Google Scholar 

  • Masuda Y, Yamamoto R (1970) Effect of auxin on β-1,3-glucanase activity in Avena coleoptile. Dev Growth Differ 11: 287–296

    PubMed  CAS  Google Scholar 

  • Masuda Y, Yamamoto R, Kawamura H, Yamagata Y (1974) Stress relaxation properties of the cell wall of tissue segments under different growth conditions. Plant Cell Physiol 15: 1083–1092

    CAS  Google Scholar 

  • Métraux JP, Taiz L (1977) Cell wall extension in Nitella as influenced by acid and ions. Proc Natl Acad Sci USA 74: 1565–1569

    PubMed  Google Scholar 

  • Monro JA, Penny D, Bailey RW (1976) The organization and growth of primary cell walls of lupin hypocotyls. Phytochemistry 15: 1193–1198

    CAS  Google Scholar 

  • Morré DJ, Eisinger WR (1968) Cell wall extensibility; its control by auxin and relationship to cell elongation. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge Press, Ottawa, pp 625–645

    Google Scholar 

  • Nakamura T, Sekine S, Arai K, Takahashi N (1975) Effects of gibberellic acid and IAA on stress-relaxation properties of pea hook cell wall. Plant Cell Physiol 16: 127–138

    CAS  Google Scholar 

  • Nevins DJ (1975a) The effect of nojirimycin on plant growth and its implications concerning a role of exo-β-glucanases in auxin-induced cell expansion. Plant Cell Physiol 16: 347–356

    CAS  Google Scholar 

  • Nevins DJ (1975 b) The in vitro simulation of IAA-induced modification of Avena cell wall polysaccharides by an exo-glucanase. Plant Cell Physiol 16: 495–503

    CAS  Google Scholar 

  • Nevins DJ, Huber DJ, Yamamoto R, Loescher W (1977) β-d-glucan of Avena coleoptile cell wall. Plant Physiol 60: 617–620

    PubMed  CAS  Google Scholar 

  • Nishitani K, Masuda Y (1980) Modifications of cell wall polysaccharides during auxin-induced growth in azuki bean epicotyl segments. Plant Cell Physiol 21: 169–181

    CAS  Google Scholar 

  • Nishitani K, Shibaoka H, Masuda Y (1979) Growth and cell changes in azuki bean epicotyls. II. Changes in wall polysaccharides during auxin-induced growth of excised segments. Plant Cell Physiol 20: 463–472

    CAS  Google Scholar 

  • Noodén LD, Thimann KV (1963) Evidence for a requirement for protein synthesis for auxin-induced cell enlargement. Proc Natl Acad Sci USA 50: 194–200

    PubMed  Google Scholar 

  • Olson AC, Bonner J, Morré DJ (1965) Force extension analysis of Avena coleoptile cell walls. Planta 66: 127–133

    Google Scholar 

  • Osborne DJ (1977) Auxin and ethylene and the control of cell growth. Identification of three classes of target cells. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, pp 161–171

    Google Scholar 

  • Penny P, Penny D (1978) Rapid responses to phytohormones. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds. Vol II. North Holland, Amsterdam, pp 537–597

    Google Scholar 

  • Penny P, Penny D, Marshall D, Heyes JK (1972) Early responses of excised stem segments to auxins. J Exp Bot 23: 23–36

    CAS  Google Scholar 

  • Penny D, Penny P, Marshall DC (1974) High resolution measurement of plant growth. Can J Bot 52: 959–969

    Google Scholar 

  • Pilet PE (1971) Les Parois Cellulaires. Doin, Paris, p 172

    Google Scholar 

  • Pilet PE, Roland J-C (1974) Growth and extensibility of collenchyma cells. Plant Sci Lett 2: 203–207

    CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London, p 491

    Google Scholar 

  • Probine MC, Preston RD (1962) Cell growth and the structure and mechanical properties of the wall in internodal cells of Nitella opaca. II. Mechanical properties of the walls. J Exp Bot 13: 111–127

    CAS  Google Scholar 

  • Ray PM (1962) Cell wall synthesis and cell elongation in oat coleoptile tissues. Am J Bot 49: 928–939

    CAS  Google Scholar 

  • Ray PM (1974) The biochemistry of the action of IAA on plant growth. In: Runeckles VC, Sondheimer E (eds) The chemistry and biochemistry of plant hormones. Academic Press, New York, pp 93–122

    Google Scholar 

  • Ray PM, Ruesink AW (1962) Kinetic experiments on the nature of the growth mechanism in oat coleoptile cells. Dev Biol 4: 377–397

    CAS  Google Scholar 

  • Ray PM, Green PB, Cleland RE (1972) Role of turgor in plant cell growth. Nature 239: 163–164

    Google Scholar 

  • Rayle DL (1973) Auxin-induced hydrogen-ion excretion in Avena coleoptiles and its implications. Planta 114: 63–73

    CAS  Google Scholar 

  • Rayle DL, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46: 250–253

    PubMed  CAS  Google Scholar 

  • Rayle DL, Cleland RE (1972) The in-vitro acid-growth response: relation to in-vivo growth responses and auxin action. Planta 104: 282–296

    CAS  Google Scholar 

  • Rayle DL, Cleland RE (1977) Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol 11: 187–214

    PubMed  CAS  Google Scholar 

  • Rayle DL, Haughton PM, Cleland RE (1970) An in vitro system that simulates plant cell extension growth. Proc Natl Acad Sci USA 67: 1814–1817

    PubMed  CAS  Google Scholar 

  • Roelofsen PA (1965) Ultrastructure of the wall in growing cells and its relation to the direction of growth. Adv Bot Res 2: 69–149

    Google Scholar 

  • Roland J-C, Vian B (1979) The wall of the growing cell: its three dimensional organization. Int Rev Cytol 61: 129–166

    Google Scholar 

  • Ruesink AW (1969) Polysaccharidases and the control of cell wall elongation. Planta 89: 95–107

    CAS  Google Scholar 

  • Sakurai N, Masuda Y (1978) Auxin-induced extensibility, cell wall loosening and changes in the wall polysaccharide content of barley coleoptile segments. Plant Cell Physiol 19: 1225–1233

    CAS  Google Scholar 

  • Sakurai N, Masuda Y (1979) Effect of cycloheximide and cordycepin on auxin-induced elongation and β-glucan degredation of non-cellulosic polysaccharides of Avena coleoptile cell walls. Plant Cell Physiol 20: 593–603

    CAS  Google Scholar 

  • Sakurai N, Nevins DJ, Masuda Y (1977) Auxin and hydrogen ion-induced cell wall loosening and cell extension in Avena coleoptile segments. Plant Cell Physiol 18: 371–380

    CAS  Google Scholar 

  • Sakurai N, Nishitani K, Masuda Y (1979) Auxin-induced changes in the molecular weight of hemicellulosic polysaccharides of the Avena coleoptile cell wall. Plant Cell Physiol 20: 1349–1357

    CAS  Google Scholar 

  • Sumiya K, Yamada T (1974) Effect of IAA on stress relaxation of Japanese black pine seedling. Wood Res 56: 13–20

    Google Scholar 

  • Tagawa T, Bonner J (1957) Mechanical properties of the Avena coleoptile as related to auxin and to ionic interactions. Plant Physiol 32: 207–212

    PubMed  CAS  Google Scholar 

  • Tanimoto E, Igari M (1976) Correlation between β-galactosidase and auxin-induced elongation growth in etiolated pea stems. Plant Cell Physiol 17: 673–682

    CAS  Google Scholar 

  • Tanimoto E, Masuda Y (1968) Effect of auxin on cell wall degrading enzymes. Physiol Plant 21: 820–826

    CAS  Google Scholar 

  • Tanimoto E, Masuda Y (1971) Role of the epidermis in auxin-induced elongation of light-grown pea stem segments. Plant Cell Physiol 12: 663–673

    CAS  Google Scholar 

  • Tepfer M, Cleland RE (1979) A comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles. Plant Physiol 63: 898–902

    PubMed  CAS  Google Scholar 

  • Terry M, Rubinstein B, Jones RL (1980) Changes in soluble cell wall polysaccharides and growth. Plant Physiol 65: S23

    Google Scholar 

  • Uhrström I (1974) The effect of auxin and low pH on Young’s modulus in Pisum stems and on water permeability in potato parenchyma. Physiol Plant 30: 97–102

    Google Scholar 

  • Valent BS, Albersheim P (1974) The structure of plant cell walls. V. On the binding of xyloglucan to cellulose fibers. Plant Physiol 54: 105–108

    PubMed  CAS  Google Scholar 

  • Verma DPS, Maclachlan GA, Byrne H, Ewings D (1975) Regulation and in vitro translation of messenger RNA for cellulose from auxin-treated pea epicotyls. J Biol Chem 250: 1019–1026

    PubMed  CAS  Google Scholar 

  • Waaland SD, Waaland JR, Cleland RE (1972) A new pattern of plant cell elongation: bipolar band growth. J Cell Biol 54: 184–190

    PubMed  CAS  Google Scholar 

  • Wada S, Ray PM (1978) Matric polysaccharides of oat coleoptile cell walls. Phytochemistry 17: 923–931

    CAS  Google Scholar 

  • Wada S, Tanimoto E, Masuda Y (1968) Cell elongation and metabolic turnover of the cell wall as affected by auxin and cell wall degrading enzymes. Plant Cell Physiol 9: 269–276

    Google Scholar 

  • Yamagata Y, Masuda Y (1975) Comparative studies on auxin and fusicoccin actions on plant growth. Plant Cell Physiol 16: 41–52

    CAS  Google Scholar 

  • Yamagata Y, Masuda Y (1976) Auxin-induced extension of the isolated epidermis of light-grown pea epicotyls. Plant Cell Physiol 17: 1235–1242

    CAS  Google Scholar 

  • Yamagata Y, Yamamoto R, Masuda Y (1974) Auxin and hydrogen ion actions on light-grown pea epicotyl sections. II. Effect of hydrogen ions on extension of isolated epidermis. Plant Cell Physiol 15: 833–841

    CAS  Google Scholar 

  • Yamamoto R, Masuda Y (1971) Stress-relaxation properties of the Avena coleoptile cell wall. Physiol Plant 25: 330–335

    CAS  Google Scholar 

  • Yamamoto R, Nevins DJ (1979) A transglucosylase from Sclerotinia libertiana. Plant Physiol 64: 193–196

    PubMed  CAS  Google Scholar 

  • Yamamoto R, Shinozyki K, Masuda Y (1970) Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol 11: 947–956

    CAS  Google Scholar 

  • Yamamoto R, Makai K, Masuda Y (1974) Auxin and hydrogen ion actions on light-grown pea epicotyl segments. III. Effect of auxin and hydrogen ions on stress-relaxation properties. Plant Cell Physiol 15: 1027–1038

    CAS  Google Scholar 

  • Yoda S, Ashida J (1960) Effect of gibberellin and auxin on the extensibility of the pea stem. Plant Cell Physiol 1: 99–105

    Google Scholar 

  • Zarra I, Masuda Y (1979) Growth and cell wall changes in rice coleoptiles growing under different conditions. II. Auxin-induced growth in coleoptile segments. Plant Cell Physiol 20: 1125–1133

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Cleland, R.E. (1981). Wall Extensibility: Hormones and Wall Extension. In: Tanner, W., Loewus, F.A. (eds) Plant Carbohydrates II. Encyclopedia of Plant Physiology, vol 13 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68234-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68234-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68236-0

  • Online ISBN: 978-3-642-68234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics