Skip to main content

Physiology and Ecology of Nitrogen Nutrition

  • Chapter
Physiological Plant Ecology III

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / C))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M (1961) Introduction to soil microbiology. John Wiley and Sons, New York

    Google Scholar 

  • Allison FE (1966) The fate of nitrogen applied to soils. Adv Agron 18: 219–258

    CAS  Google Scholar 

  • Anderson OE, Boswell FC (1964) The influence of low temperature and various concentrations of ammonium nitrate on nitrification in acid soils. Soil Sci Soc Am Proc 28: 525–529

    CAS  Google Scholar 

  • Anderson OE, Boswell FC, Harrison RM (1971) Variations in low temperature adaptability of nitrifiers in acid soils. Soil Sci Soc Am Proc 35: 68–71

    CAS  Google Scholar 

  • Andrews RE, Newman EI (1970) Root density and competition for nutrients. Oecol Plant 5: 319–334

    Google Scholar 

  • Ansari AQ, Bowling DJF (1972) Measurement of the trans-root electrical potential of plants grown in soil. New Phytol 71: 111–117

    Google Scholar 

  • Austenfeld FA (1972) Untersuchungen zur Physiologie der Nitratspeicherung und Nitratassimilation von Chenopodium albumL. Z Pflanzenphysiol 67: 271–281

    CAS  Google Scholar 

  • Austenfeld F A (1974) Der Einfluß des NaCl und anderer Alkalisalze auf die Nitratreduktaseaktivität von Salicornia europaeaL. Z Pflanzenphysiol 71: 288–296

    CAS  Google Scholar 

  • Ayanaba A, Omayuli APO (1975) Microbial ecology of acid tropical soils. A preliminary report. Plant Soil 43: 519–522

    Google Scholar 

  • Bartholomew WV, Clark FE (1950) Nitrogen transformation in soil in relation to the rhizosphere microflora. 4th Int Congr Soil Sci, Amsterdam

    Google Scholar 

  • Beevers L, Hageman RH (1969) Nitrate reduction in higher plants. Annu Rev Plant Physiol 20: 495–522

    CAS  Google Scholar 

  • Belser LW (1979) Population ecology of nitrifying bacteria. Annu Rev Microbiol 33: 309–333

    PubMed  CAS  Google Scholar 

  • Ben Zioni A, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of shoots. Physiol Plant 24: 288–290

    Google Scholar 

  • Bernhard-Reversat F (1975) Recherches sur l’écosystème de la forêt sub-équatoriale de basse Côte-d’Ivoire. VI. Les cycles des macroéléments. Terre Vie 29: 229–254

    Google Scholar 

  • Bernhard-Reversat F (1976) Essai de comparaison des cycles d’éléments minéraux dans les plantations de framiré (Terminalia ivorensis) et en forêt naturelle de Côte-d’Ivoire. Bois For Trop 167: 25–38

    CAS  Google Scholar 

  • Bigg WL, Daniel TW (1978) Effects of nitrate, ammonium and pH on the growth of conifer seedlings and their production of nitrate reductase. Plant Soil 50: 371–385

    CAS  Google Scholar 

  • Billès G, Lossaint P, Cortez J (1971) L’activité biologique des sols dans les ecosystems méditerranéens II. Minéralisation de l’azote. Rev Ecol Biol Sol 8: 533–552

    Google Scholar 

  • Birch HF (1959) Further observations on humus decomposition and nitrification. Plant Soil 9: 262–286

    Google Scholar 

  • Birch HF (1960a) Nitrification in soils after different periods of dryness. Plant Soil 12: 81–96

    CAS  Google Scholar 

  • Birch HF (1960b) Soil drying and soil fertility. Trop Agric 37: 3–10

    CAS  Google Scholar 

  • Birch HF (1964) Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil 20: 43–49

    Google Scholar 

  • Björkman E, Lundberg G (1971) Studies of root competition in a poor pine forest by supply of labelled nitrogen and phosphorus. Stud For Suec 94: 4–16

    Google Scholar 

  • Bogner W (1968) Experimentelle Prüfung von Waldbodenpflanzen auf ihre Ansprüche an die Form der Stickstoff-Ernährung. Mitt Ver Forstl Standortkd Forstpflanzenzuecht 18: 3–45

    Google Scholar 

  • Bogner W, Dieterich H (1968) Weitere Kulturversuche mit variierter Stickstoff-Form und abgestufter Azidität. Mitt Ver Forstl Standortkd Forstpflanzenzuecht 18: 46–58

    Google Scholar 

  • Brar SS, Giddens J (1968) Inhibition of nitrification in Bladen grassland soil. Soil Sci Soc Am Proc 32: 821–823

    CAS  Google Scholar 

  • Bremner JM (1965) Nitrogen availability indexes. Agronomy 9: 1324–1345

    CAS  Google Scholar 

  • Breteler H (1973) A comparison between ammonium and nitrate nutrition of young sugar-beet plants grown in nutrient solutions at constant acidity. 1. Production of dry matter, ionic balance and chemical composition. Neth J Agric Sci 21: 227–244

    CAS  Google Scholar 

  • Bücking W (1972) Zur Stickstoffversorgung von südwestdeutschen Waldgesellschaften. Flora 161: 383–400

    Google Scholar 

  • Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Butz RG, Jackson WA (1977) A mechanism for nitrate transport and reduction. Phytochemistry 16: 409–417

    CAS  Google Scholar 

  • Cain JC (1954) Blueberry chlorosis in relation to leaf pH and mineral composition. Proc Am Soc Hortic Sci 64: 61–70

    CAS  Google Scholar 

  • Charley JL (1972) The role of shrubs in nutrient cycling. In: Wildland shrubs — their biology and utilization. USD A For Serv Gen Tech Rep INT-1:182–203

    Google Scholar 

  • Choudry MS, Cornfield AH (1978) Nitrogen and carbon mineralization during incubation of two Bangladesh soils in relation to temperature. Plant Soil 49: 317–321

    Google Scholar 

  • Coïc Y, Lesaint C, Roux F le (1962) Effects de la nature ammoniacale ou nitrique de l’alimentation azotée et du changement de la nature de cette alimentation sur le métabolisme des anions et cations chez le tomate. Ann Physiol Veg 4: 117–125

    Google Scholar 

  • Cooper JE (1975) Nitrification in soils incubated with pig slurry. Soil Biol Biochem 7: 119–124

    CAS  Google Scholar 

  • Cornfield AH (1953) The mineralisation of nitrogen in soil acidified with sulphur, aluminium sulphate or ferrous sulphate. J Sci Food Agric 33: 343–349

    Google Scholar 

  • Cox WJ, Reisenauer HM (1973) Growth and ion uptake by wheat supplied with nitrogen as nitrate, or ammonium, or both. Plant Soil 38: 363–380

    CAS  Google Scholar 

  • Date RA (1973) Nitrogen, a major limitation in the productivity of natural communities, crops and pastures in the Pacific Area. Soil Biol Biochem 5: 5–18

    CAS  Google Scholar 

  • Davies DD (1973) Control of and by pH. Symp Soc Exp Biol 27: 513–529

    PubMed  CAS  Google Scholar 

  • Davy AJ, Taylor K (1974) Seasonal patterns of nitrogen availability in contrasting soils in the Chiltern Hills. J Ecol 62: 793–807

    CAS  Google Scholar 

  • Dickson BA, Crocker RL (1953) A chronosequence of soils and vegetation near Mt Shasta, California. II. The development of the forest floors and the carbon and nitrogen profiles of the soils. J Soil Sci 4: 142–154

    CAS  Google Scholar 

  • Dijkshoorn W (1962) Metabolic regulation of the alkaline effect of nitrate utilization in plants. Nature (London) 194: 165–167

    CAS  Google Scholar 

  • Doddema H, Telkamp GP (1979) Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. II. Kinetics. Physiol Plant 45: 332–338

    CAS  Google Scholar 

  • Doddema H, Hofstra J J, Feenstra WJ (1978) Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. I. Effect of nitrogen source during growth on uptake of nitrate and chlorate. Physiol Plant 43: 343–350

    CAS  Google Scholar 

  • Dommergues Y (1960) Minéralisation de l’azote aux faibles humidités. Trans 7th Int Congr Soil Sci 2: 672–678

    Google Scholar 

  • Driessche van den R (1978) Response of Douglas fir seedlings to nitrate and ammonium nitrogen sources at different levels of pH and iron supply. Plant Soil 49: 607–623

    Google Scholar 

  • Driessche van den R, Dangerfield J (1975) Response of Douglas fir seedlings to nitrate and ammonium nitrogen sources under various environmental conditions. Plant Soil 42: 658–702

    Google Scholar 

  • Ehrhardt F (1959) Untersuchungen über den Einfluß des Klimas auf die Stickstoffnachlieferung von Waldhumus in verschiedenen Höhenlagen der Tiroler Alpen. Diss, Staatswirtsch Fak Univ München

    Google Scholar 

  • Ehrhardt F (1961) Untersuchungen über den Einfluß des Klimas auf die Stickstoffnachlieferung von Waldhumus in verschiedenen Höhenlagen der Tiroler Alpen. Forstwiss Centralbl 80: 193–215

    CAS  Google Scholar 

  • Ellenberg H (1964) Stickstoff als Standortsfaktor. Ber Dtsch Bot Ges 77: 82–92

    Google Scholar 

  • Ellenberg H (1977) Stickstoff als Standortsfaktor, insbesondere für mitteleuropäische Pflanzengesellschaften. Oecol Plant 12: 1–22

    CAS  Google Scholar 

  • Emberger S (1965) Die Stickstoffvorräte bayerischer Waldböden. Forstwiss Centralbl 84: 156–200

    Google Scholar 

  • Eno F (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci Soc Am Proc 24: 277–279

    CAS  Google Scholar 

  • Etinger-Tulczynska R (1969) A comparative study of nitrification in soils from arid and semiarid areas of Israel. J Soil Sci 20: 473–481

    Google Scholar 

  • Evers FH (1964) Die Bedeutung der Stickstofform für Wachstum und Ernährung der Pflanzen, insbesondere der Waldbäume. Mitt Ver Forstl Standortskd Forstpflanzenzuecht 14: 19–37

    Google Scholar 

  • Ferguson AR (1969) The nitrogen metabolism of Spirodela oligorrhiza. II. Control of the enzymes of nitrate assimilation. Planta 88: 353–363

    CAS  Google Scholar 

  • Flowers TJ (1972) The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochemistry 11: 1881–1886

    CAS  Google Scholar 

  • Focht DD, Martin JP (1979) Microbiological and biochemical aspects of semi-arid agricultural soils. In: Hall AE, Cannell GH, Lawton HW (eds) Agriculture in semi-arid environments. Ecological studies, vol 34. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1: 135–214

    CAS  Google Scholar 

  • Frederik R (1956) The formation of nitrate from ammonium nitrogen in soils 1. Effect of temperature. Soil Sci Soc Am Proc 20: 496–500

    Google Scholar 

  • Fried M, Zsoldos F, Vose PB, Shatokhin IL (1965) Characterizing the NO3 and NH4 uptake process of rice roots by use of 15N labelled NH4NO3. Physiol Plant 18: 313–320

    CAS  Google Scholar 

  • Frith GJT (1972) Effect of ammonium nutrition on the activity of nitrate reductase in the roots of apple seedlings. Plant Cell Physiol 13: 1085–1090

    CAS  Google Scholar 

  • Froment A, Remacle J (1975) Evolution de l’azote minéral et de la microflore dans le sol d’une pessière (Piceetum) a Mirwart. Bull Soc R Bot Belg 108: 53–64

    CAS  Google Scholar 

  • Frota JNE, Tucker TC (1978) Absorption rates of ammonium and nitrate by red kidney beans under salt and water stress. Soil Sci Soc Am J 42: 753–757

    CAS  Google Scholar 

  • Gerlach A (1978) Zur Bestimmung der Stickstoff-Nettomineralisation in mehr oder minder nassen Böden. Oecol Plant 13: 163–174

    Google Scholar 

  • Gessel SP, Cole DW, Steinbrenner EC (1973) Nitrogen balances in forest ecosystems of the Pacific Northwest. Soil Biol Biochem 5: 19–34

    Google Scholar 

  • Gigon A (1968) Stickstoff- und Wasserversorgung von Trespen-Halbtrockenrasen (Meso- bromion) im Jura bei Basel. Ber Geobot Inst Eidg Tech Hochsch Stift Ruebel, Zuerich 38: 28–85

    Google Scholar 

  • Gigon A, Rorison IH (1972) The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. J Ecol 60:93–102 Glavac V, Koenies H (1978a) Mineralstickstoff-Gehalte und N-Nettomineralisation im Boden eines Fichtenforstes und Scines Kahlschlages während der Vegetationsperiode 1977. Oecol Plant 13 (3): 207–218

    CAS  Google Scholar 

  • Glavac V, Koenies H (1978a) Mineralstickstoff-Gehalte und N-Nettomineralisation im Boden eines Fichtenforstes und Scines Kahlschlages während der Vegetationsperiode 1977. Oecol Plant 13 (3): 207–218

    Google Scholar 

  • Glavac V, Koenies H (1978b) Vergleiche der N-Nettomineralisation in einem Sauerhumus-Buchenwald (Luzulo-Fagetum) und einem benachbarten Fichtenforst am gleichen Standort vor und nach dem Kahlschlag. Oecol Plant 13(3): 219–226

    Google Scholar 

  • Gode P, Overbeck J (1972) Untersuchungen zur heterotrophen Nitrifikation im See. Z Allg Mikrobiol 12: 567–574

    PubMed  CAS  Google Scholar 

  • Grasmanis VO, Nicholas DJD (1971) Annual uptake and distribution of 15N labelled ammonia and nitrate in young Jonathan/MM104 apple trees grown in solution cultures. Plant Soil 35: 95–112

    CAS  Google Scholar 

  • Greenway H, Osmond CB (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49: 256–259

    PubMed  CAS  Google Scholar 

  • Greenwood DJ (1961) The effect of oxygen concentration on the decomposition of organic materials in soil. Plant Soil 14: 360–376

    CAS  Google Scholar 

  • Greidanus T, Peterson LA, Schräder LE, Dana MN (1972) Essentiality of ammonium for cranberry nutrition. J Am Soc Hortic Sci 97: 272–277

    CAS  Google Scholar 

  • Hageman RH, Flesher D (1960) Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol 35: 700–708

    PubMed  CAS  Google Scholar 

  • Harding DE, Ross DJ (1964) Some factors in low-temperature storage influencing the mineralizable nitrogen of soils. J Sci Food Agric 15: 829–834

    CAS  Google Scholar 

  • Harmsen GW, Schreven van DA (1955) Mineralization of organic nitrogen in soil. Adv Agron 7: 299–398

    Google Scholar 

  • Harradine F, Jenny H (1958) Influence of parent material and climate on texture and nitrogen and carbon contents of virgin California soils. I. Texture and nitrogen contents of soils. Soil Sci 85: 235–243

    CAS  Google Scholar 

  • Havill DC, Lee JA, Stewart GR (1974) Nitrate utilization by species from acidic and calcareous soils. New Phytol 73: 1221–1231

    CAS  Google Scholar 

  • Havill DC, Lee JA, De-Felice J (1977) Some factors limiting nitrate utilization in acidic and calcareous grassland. New Phytol 78: 649–659

    CAS  Google Scholar 

  • Heinsdorf D (1963) Vorräte an organischer Substanz und Stickstoff von einigen unterschiedlich stark degradierten Sandstandorten in Mittelbrandenburg. Arch Forstwes 12: 868–886

    Google Scholar 

  • Herlihy M (1973) Distribution of nitrifying and heterotrophic microorganisms in cutover peats. Soil Biol Biochem 5: 621–628

    CAS  Google Scholar 

  • Herlihy M, McAleese DM (1978) Nitrogen uptake efficiency by ryegrass in soils of a textural sequence 1. Effect of soil moisture availability. Ir J Agric Res 17: 61–70

    Google Scholar 

  • Hesselman H (1917) Studien über die Nitratbildung in natürlichen Böden und ihre Bedeutung in pflanzenökologischer Hinsicht. Medd Statens Skogsförsöksanst 13 /14: 297–422

    Google Scholar 

  • Hewitt EJ (1970) Physiological and biochemical factors which control the assimilation of inorganic nitrogen supplies by plants. In: Kirkby EA (ed) Nitrogen nutrition of the plant. Waverley Press, Leeds

    Google Scholar 

  • Hewitt EJ (1975) Assimilatory nitrate-nitrite reduction. Annu Rev Plant Physiol 26: 73–100

    CAS  Google Scholar 

  • Huffaker RC, Rains DW (1978) Factors influencing nitrate acquisition by plants; assimilation and fate of reduced nitrogen. In: Nielsen DR, MacDonald JG (eds) Nitrogen in the environment, vol II. Academic Press, London New York

    Google Scholar 

  • Huffaker RC, Radin T, Kleinkopf GE, Cox EL (1970) Effects of mild water stress on enzymes of nitrate assimilation and of the carboxylative phase of photosynthesis in barley. Crop Sci 10: 471–474

    CAS  Google Scholar 

  • Ingestad T (1973) Mineral nutrient requirements of Vaccinium vitis idaeaand V. myrtillus. Physiol Plant 29:239–246

    CAS  Google Scholar 

  • Ingestad T (1976) Nitrogen and cation nutrition of three ecologically different plant species. Physiol Plant 38: 29–34

    CAS  Google Scholar 

  • Ingestad T (1979) Mineral nutrient requirements of Pinus silvestrisand Picea abiesseedlings. Physiol Plant 45: 373–380

    CAS  Google Scholar 

  • Ishaque M, Cornfield AH (1972) Nitrogen mineralization and nitrification during incubation of East Pakistan “Tea” soils in relation to pH. Plant Soil 37: 91–95

    CAS  Google Scholar 

  • Ishaque M, Cornfield AH (1974) Nitrogen mineralization and nitrification in relation to incubation temperature in an acid Bangladesh soil lacking autotrophic nitrifying organisms. Trop Agric 51: 37–41

    CAS  Google Scholar 

  • Ishaque M, Cornfield AH, Cawse PA (1971) Effect of γ-irradiation of an acid tea soil from East Pakistan ( Bangladesh) on nitrogen mineralization and nitrification during subsequent incubation. Plant Soil 35: 201–204

    CAS  Google Scholar 

  • Jackson WA (1978) Nitrate acquisition and assimilation by higher plants: processes in the root system. In: Nielsen DR, MacDonald JG (eds) Nitrogen in the environment, vol II. Academic Press, London New York

    Google Scholar 

  • Jager G (1968) The influence of drying and freezing of soil on its organic matter decomposition. Dutch Nitr Fertil Rev 12: 75–87

    Google Scholar 

  • Janiesch P (1973a) Beitrag zur Physiologie der Nitrophyten. Nitratspeicherung und Nitratassimilation bei Anthriscus sylvestrisHoffm. Flora 162:479–491

    CAS  Google Scholar 

  • Janiesch P (1973b) Ökophysiologische Untersuchungen an Umbelliferen nitrophiler Säume. Oecol Plant 8: 335–352

    Google Scholar 

  • Janiesch P (1978) Ökophysiologische Untersuchungen von Erlenbruchwäldern. Oecol Plant 13: 43–57

    Google Scholar 

  • Jansson SL (1955) Orientierende Studien über den Stickstoffkreislauf im Boden mit Hilfe von 15N als Leitisotop. Z Pflanzenernaehr Dueng Bodenkd 69: 190–198

    CAS  Google Scholar 

  • Jansson SL (1958) Tracer studies on nitrogen transformations in soil with special attention to mineralisation/immobilisation relationships. K Lantbruksakad Ann 24: 101–361

    CAS  Google Scholar 

  • Jenny H (1928) Relation of climatic factors to the amount of nitrogen in soils. J Am SocAgron 20: 900–912

    Google Scholar 

  • Jenny H (1930) Nitrogen content of the soil as related to the precipitation - evaporation ratio. Soil Sci 29:193–206

    CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill Book Co, New York

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill Book Co, New York Jenny H (1965) Bodenstickstoff und Scine Abhängigkeit von Zustandsfaktoren. Z Pflanzenernaehr Dueng Bodenkd 109: 98–112

    Google Scholar 

  • Jenny H, Leonard CD (1934) Functional relationships between soil properties and rainfall. Soil Sci 38: 363–381

    CAS  Google Scholar 

  • Jenny H, Raychaudhuri P (1960) Effect of climate and cultivation on nitrogen and organic matter reserves in Indian soils. Indian Counc Agric Res, New Delhi, India

    Google Scholar 

  • Jenny H, Bingham F, Padillo-Saravia B (1948) Nitrogen and organic matter contents of equatorial soils of Columbia, South America. Soil Sci 66: 173–186

    CAS  Google Scholar 

  • Jenny H, Salem AE, Wallis JR (1968) Interplay of soil organic matter and soil fertility with state factors and soil properties. Pontif Acad Sci Scr Varia 32: 4–44

    Google Scholar 

  • Johnson DD, Guenzi WD (1963) Influence of salts on ammonium oxidation and carbon dioxide evolution from soil. Soil Sci Soc Am Proc 27: 663–665

    CAS  Google Scholar 

  • Jordan CF, Todd R, Escalante G (1979) Nitrogen conservation in a tropical rainforest. Oecologia 39: 123–128

    Google Scholar 

  • Joseph RA, Tang Van Hai, Lambert J (1975) Multiphasic uptake of ammonium by soybean roots. Physiol Plant 34: 321–325

    CAS  Google Scholar 

  • Justice JK, Smith RL (1962) Nitrification of ammonium sulfate in a calcareous soil as influenced by combination of moisture, temperature and levels of added nitrogen. Soil Sci Soc Am Proc 26: 246–250

    CAS  Google Scholar 

  • Keeney DR, Bremner JM (1966) Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron J 68: 498–503

    Google Scholar 

  • Kirkby EA (1969) Ion uptake and ionic balance in plants in relation to the form of nitrogen nutrition. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. Blackwell Scientific Publications, Oxford Edinburgh

    Google Scholar 

  • Kirkby EA, Armstrong MJ (1980) Nitrate uptake by roots as regulated by nitrate assimilation in the shoot of castor oil plants. Plant Physiol 65: 286–290

    PubMed  CAS  Google Scholar 

  • Kirkby EA, Hughes AD (1970) Some aspects of ammonium and nitrate nutrition in plant metabolism. In: Kirkby EA (ed) Nitrogen nutrition of the plant. Waverly Press, Leeds, pp 69–77

    Google Scholar 

  • Kirkby EA, Knight AH (1977) The influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation and cation-anion balance in whole tomato plants. Plant Physiol 60: 349–353

    PubMed  CAS  Google Scholar 

  • Kirkby EA, Mengel K (1967) Ionic balance in different tissues of the tomato plant in relation to nitrate, urea or ammonium nutrition. Plant Physiol 42: 6–14

    PubMed  CAS  Google Scholar 

  • Klemmedson JO, Jenny H (1966) Nitrogen availability in California soils in relation to precipitation and parent material. Soil Sci 102: 215–222

    CAS  Google Scholar 

  • Klötzli F (1969) Zur Ökologie schweizerischer Bruchwälder unter besonderer Berücksichtigung des Waldreservates Moos bei Birmensdorf und des Katzensees. Ber Geobot Inst Eidg Tech Hochsch Stift Ruebel Zuerich 39: 56–123

    Google Scholar 

  • Kovacs M (1965) Anwendung von bodenbiologischen Methoden in pflanzengeographischen Forschungen. I. Untersuchung der Nitratproduktion in den Waldböden des Matra-Gebirges. Acta Bot Hung 11: 361–382

    CAS  Google Scholar 

  • Kovacs M (1968) Nitrification capacity of the soils of marshy and hay meadows. Acta Agron Acad Sci Hung 17: 25–36

    Google Scholar 

  • Krajina VJ, Madoc-Jones S, Mellor G (1973) Ammonium and nitrate in the nitrogen economy of some conifers growing in Douglas fir communities of the Pacific North- West of America. Soil Biol Biochem 5: 143–147

    CAS  Google Scholar 

  • Kurvits A, Kirkby EA (1980) The uptake of nutrients by sunflower plants (Helianthus annuus) growing in a continuous flowing culture system, supplied with nitrate or ammonium as nitrogen source. Z Pflanzenernaehr Bodenkd 143: 140–149

    CAS  Google Scholar 

  • Labeda DP, Alexander M (1978) Effects of S02 and N02 on nitrification in soil. J Environ Qual 7: 523–526

    CAS  Google Scholar 

  • Laurent M (1971) La nitrification autotrophe et hétérotrophe dans les écosystèmes aquatiques. Ann Inst Pasteur 121: 795–810

    CAS  Google Scholar 

  • Lea PJ, Miflin BJ (1974) Alternative route for nitrogen assimilation in higher plants. Nature (London) 251: 614–616

    CAS  Google Scholar 

  • Lemée G (1967) Investigations sur la minéralisation de l’azote et son évolution annuelle dans des humus forestiers in situ. Oecol Plant 2: 285–324

    Google Scholar 

  • Leon R (1968) Balance d’eau et d’azote dans des prairies à litière des alentours de Zurich. Veroeff Geobot Inst Eidg Tech Hochsch Stift Ruebel, Zuerich 41: 2–68

    Google Scholar 

  • Lewis OAM, Kaiser JJ, Probyn TA (1979) A comparison of nitrogen assimilation pathways in nitrophilous plants. In: Hewitt EJ, Cutting CV (eds) Nitrogen assimilation of plants. Academic Press, London New York

    Google Scholar 

  • Li CY, Lu CK, Trappe JM, Bollen WB (1972) Nitrate-reducing capacity of roots and nodules of Alnus rubraand roots of Pseudotsuga menziesii. Plant Soil 37: 409–414

    CAS  Google Scholar 

  • Liang CN, Tabatabai MA (1977) Effects of trace elements on nitrogen mineralization in soils. Environ Pollut 12: 141–147

    Google Scholar 

  • Lossaint P, Roubert RM (1964) La minéralisation de l’azote organique dans quelques humus forestiers acides. Ann Inst Pasteur 107: 178–187

    Google Scholar 

  • Lycklama JC (1963) The absorption of ammonium and nitrate by perennial rye-grass. Acta Bot Neerl 12: 361–423

    CAS  Google Scholar 

  • Madl W (1960) Bindung und Verteilung des Phosphors in Böden der bayerischen Moränenlandschaft. Diss, Naturwiss Fak Univ München

    Google Scholar 

  • Magalhaes AC, Peters DB, Hageman RH (1976) Influence of temperature on nitrate metabolism and leaf expansion in soybean (Glycine maxL. Merr) seedlings. Plant Physiol 58: 12–16

    PubMed  CAS  Google Scholar 

  • Mahendrappa MK, Smith RL, Christiansen AT (1966) Nitrifying organisms affected by climatic region in western United States. Soil Sci Soc Am Proc 30: 60–62

    CAS  Google Scholar 

  • Markovic-Gospodarić L (1968) Untersuchungen über die Mineralstickstoff-Anreicherung an Standorten der nitrophilen Pflanzengesellschaften in Süddeutschland. Acta Bot Croat 26–27: 53–70

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy-metal-resistant and nonresistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33: 161–165

    CAS  Google Scholar 

  • Maynard DN, Barker AV (1969) Studies on the tolerance of plants to ammonium nutrition. J Am Soc Hortic Sci 94: 235–239

    CAS  Google Scholar 

  • McFee WW, Stone Jr EL (1968) Ammonium and nitrate as nitrogen sources for Pinus radiataand Picea glauca. Soil Sci Soc Am Proc 32: 879–884

    CAS  Google Scholar 

  • Meiklejohn J (1962) Microbiology of the nitrogen cycle in some Ghana soils. Emp J Exp Agric 30: 115–126

    Google Scholar 

  • Meiklejohn J (1968) Numbers of nitrifying bacteria in some rhodesian soils under natural grass and improved pastures. J Appl Ecol 5: 291–300

    Google Scholar 

  • Mengel K, Viro M (1978) The significance of plant energy status for the uptake and incorporation of NH4-nitrogen by young rice plants. Soil Sci Plant Nutr 24: 407–416

    CAS  Google Scholar 

  • Mengel K, Viro M, Hehl G (1976) Effect of potassium on uptake and incorporation of ammonium-nitrogen of rice plants. Plant Soil 44: 547–558

    CAS  Google Scholar 

  • Michael G, Schumacher H, Marschner H (1965) Aufnahme von Ammonium- und Nitratstickstoff aus markiertem Ammoniumnitrat und deren Verteilung in der Pflanze. Z Pflanzenernaehr Dueng Bodenkd 110: 225–238

    Google Scholar 

  • Michael H, Martin P, Owassia I (1970) The uptake of ammonium and nitrate from labelled ammonium nitrate in relation to the carbohydrate supply of the roots. In: Kirkby EA (ed) Nitrogen nutrition of the plant. Waverley Press, Leeds

    Google Scholar 

  • Miflin BJ, Lea PJ (1977) Amino acid metabolism. Annu Rev Plant Physiol 28: 299–329

    CAS  Google Scholar 

  • Minotti PL, Williams DC, Jackson WD (1969) Nitrate uptake by wheat as influenced by ammonium and other cations. Crop Sci 9: 9–14

    CAS  Google Scholar 

  • Mommaerts-Billiet F, Froment A (1969) Évolution de la litière de feuilles et activité des microorganismes réducteurs au cours de l’année 1968. Bull Soc R Bot Belg 102: 411–434

    Google Scholar 

  • Moore DP (1974) Physiological effects of pH on roots. In: Carson EW (ed) The plant root and its environment. Univ Press Virginia, Charlottesville, pp 135–151

    Google Scholar 

  • Moore DRR, Waid JS (1971) The influence of washings of living roots on nitrification. Soil Biol Biochem 3: 69–83

    CAS  Google Scholar 

  • Moravcova-Husova M (1963) Nitrifikace v různých vývojových stadiích púd. (Nitrifikation in verschiedenen Entwicklungsstadien der Böden.) Rostl Vyroba 9: 845–851

    CAS  Google Scholar 

  • Moravec J (1975) Die Austauschionengarnitur des Bodens als ökologisches Charakteristikum des Substrates. In: Tüxen R (ed) Vegetation und Substrat. J Cramer Vaduz

    Google Scholar 

  • Morilla CA, Boyer JS, Hageman RH (1973) Nitrate reductase activity and polyribosomal content of corn (Zea maysL.) having low leaf water potentials. Plant Physiol 51: 817–824

    PubMed  CAS  Google Scholar 

  • Munro PE (1966) Inhibition of nitrifiers by grass root extracts. J Appl Ecol 3: 231–238

    Google Scholar 

  • Myers RKJ (1975) Temperature effects on ammonification and nitrification in a tropical soil. Soil Biol Biochem 7: 83–86

    CAS  Google Scholar 

  • Neal JL (1969) Inhibition of nitrifying bacteria by grass and forb root extracts. Can J Microbiol 15: 633–635

    PubMed  Google Scholar 

  • Nelson LE, Selby R (1974) The effect of nitrogen sources and iron levels on the growth and composition of Sitka spruce and Scots pine. Plant Soil 41: 573–588

    CAS  Google Scholar 

  • Nömmik H (1976) Predicting the nitrogen-supplying power of acid forest soils from data on the release of C02 and NH3 on partial oxidation. Soil Sci 7: 569–584

    Google Scholar 

  • Nömmik H (1978) Mineralization of carbon and nitrogen in forest humus as influenced by additions of phosphate and lime. Acta Agric Scand 28: 221–230

    Google Scholar 

  • Nyborg M, Hoyt PB (1978) Effects of soil acidity and liming on mineralization of soil nitrogen. Can J Soil Sci 58: 331–338

    CAS  Google Scholar 

  • Oaks A (1979) Nitrate reductase in roots and its regulation. In: Hewitt EJ, Cutting CV (eds) Nitrogen assimilation of plants. Academic Press, London New York

    Google Scholar 

  • Odu CTI, Adeoye KB (1970) Heterotrophic nitrification in soils — A preliminary investigation. Soil Biol Biochem 2: 41

    CAS  Google Scholar 

  • Olson JS (1958) Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot Gaz 119: 125–170

    CAS  Google Scholar 

  • Onwueme IC, Laude WM, Huffaker RC (1971) Nitrate reductase activity in relation to heat stress in barley seedlings. Crop Sci 11: 195–200

    CAS  Google Scholar 

  • Painter H (1970) A review of literature of inorganic nitrogen metabolism in microorganisms. Water Res 4: 393–450

    CAS  Google Scholar 

  • Pal UR, Johnson RR, Hageman RH (1976) Nitrate reductase activity in heat (drought) tolerant and intolerant maize genotyps. Crop Sci 16: 775–779

    CAS  Google Scholar 

  • Paul EA, Tu LM (1965) Alternation of microbial activities, mineral nitrogen and free amino acid constituents of soils by physical treatment. Plant Soil 22: 207–219

    CAS  Google Scholar 

  • Pfadenhauer J (1979) Die Stickstoffmineralisation in Böden subtropischer Regenwälder in Südbrasilien. Oecol Plant 14: 27–40

    Google Scholar 

  • Pistorius EK, Funkhouser EA, Voss H (1978) Effect of ammonium and ferricyanide on nitrate utilization by Chlorella vulgaris. Planta 141: 279–282

    CAS  Google Scholar 

  • Popovic B (1967) Kvävemobiliseringsförsök med humusprov frän gödslingsförsöksytor i skogsbeständ pä fastmark. (Stickstoffmobilisierungsversuche mit Humusproben von forstlichen Düngungsflächen auf terrestrischem Boden.) Skogshoegsk, Avd Skogsekol, Rapp Uppsatser 6, Stockholm

    Google Scholar 

  • Popović B (1977) Effect of ammonium nitrate and urea fertilizers on nitrogen mineralization, especially nitrification, in a forest soil. Skogshoegsk, Avd Skogsekol, Rapp Uppsatser 30, Stockholm

    Google Scholar 

  • Praag van HJ, Weissen F (1973) Elements of a functional definition of oligotroph humus based on the nitrogen nutrition of forest stands. J Appl Ecol 10: 569–583

    Google Scholar 

  • Premi PR, Cornfield AH (1969) Effects of addition of copper, manganese, zinc and chromium compounds on ammonification and nitrification during incubation of soil. Plant Soil 31: 345–352

    CAS  Google Scholar 

  • Purchase BS (1974a) Evaluation of the claim that grass root exudates inhibit nitrification. Plant Soil 41: 527–539

    Google Scholar 

  • Purchase BS (1974b) The influence of phosphate deficiency on nitrification. Plant Soil 41: 541–547

    Google Scholar 

  • Radin JW (1975) Differential regulation of nitrate reductase induction in roots and shoots of cotton plants. Plant Physiol 55: 178–182

    PubMed  CAS  Google Scholar 

  • Rao KP, Rains DW (1976a) Nitrate absorption by barley. I. Kinetics and energetics. Plant Physiol 57: 55–58

    CAS  Google Scholar 

  • Rao KP, Rains DW (1976b) Nitrate absorption by barley. II. The influence of nitrate reductase activity. Plant Physiol 57: 59–62

    CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76: 415–431

    CAS  Google Scholar 

  • Reichman GA, Grünes DL, Viets FG (1966) Effect of soil moisture on ammonification and nitrification in two northern plains soils. Soil Sci Soc Am Proc 30: 363–366

    CAS  Google Scholar 

  • Reisenauer HM (1978) Absorption and utilization of ammonium nitrogen by plants. In: Nielsen DR, MacDonald JG (eds) Nitrogen in the environment, vol II. Academic Press, London New York

    Google Scholar 

  • Remacle J, Froment A (1972) Teneurs en azote minéral et numérations microbiologiques dans la chênaie calcicole de Virelles ( Belgique ). Oecol Plant 7: 69–78

    Google Scholar 

  • Rham de P (1970) L’azote dans quelques forêts, savanes et terrains de culture d’Afrique tropicale humide ( Cote d’Ivoire ). Veroeff Geobot Inst Eidg Tech Hochsch Stift Ruebel Zuerich 45

    Google Scholar 

  • Rice EL (1964) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. Ecology 45: 824–837

    Google Scholar 

  • Rice EL (1965a) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. II. Characterization and identification of inhibitors. Physiol Plant 18: 255–268

    CAS  Google Scholar 

  • Rice EL (1965b) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. III. Comparison of three species of Euphorbia. Proc Okla Acad Sci 45: 43–44

    CAS  Google Scholar 

  • Rice EL (1965c) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. IV. The inhibitors produced by Ambrosia elatiorL. and Ambrosia psilostachyaDC. Southwest Nat 10: 248–255

    Google Scholar 

  • Rice EL (1969) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. VI. Inhibitors from Euphorbia supina. Physiol Plant 22: 1175–1183

    PubMed  CAS  Google Scholar 

  • Rice EL, Pancholy SK (1972) Inhibition of nitrification by climax ecosystems. Am J Bot 59: 1033–1040

    Google Scholar 

  • Rixon AJ, Bridge BJ (1968) Respiratory quotient arising from microbial activity in relation to matric suction and air filled pore space of soil. Nature (London) 218: 961–962

    CAS  Google Scholar 

  • Robinson JBD (1957) The critical relationship between soil moisture content in the region of wilting point and the mineralization of natural soil nitrogen. J Agric Sci 49: 100–105

    Google Scholar 

  • Routley DG (1972) Nitrate reductase in leaves of Ericaceae. Hortic Sci 7: 85–87

    CAS  Google Scholar 

  • Runge M (1964) Untersuchungen über die Mineralstickstoff-Nachlieferung an nordwestdeutschen Waldstandorten. Diss, Math Nat Fak Univ Hamburg

    Google Scholar 

  • Runge M (1965) Untersuchungen über die Mineralstickstoff-Nachlieferung an nordwestdeutschen Waldstandorten. Flora 155: 353–386

    CAS  Google Scholar 

  • Runge M (1970) Untersuchungen zur Bestimmung der Mineralstickstoff-Nachlieferung am Standort. Flora (Jena) Abt B 159: 233–257

    CAS  Google Scholar 

  • Runge M (1971) Investigations of the content and the production of mineral nitrogen in soils. In: Ellenberg H (ed) Ecological studies, vol II. Integrated experimental ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Runge M (1974a) Die Stickstoff-Mineralisation im Boden eines Sauerhumus-Buchen- waldes. I. Mineralstickstoff-Gehalt und Netto-Mineralisation. Oecol Plant 9: 201–218

    Google Scholar 

  • Runge M (1974b) Die Stickstoff-Mineralisation im Boden eines Sauerhumus-Buchenwaldes. II. Die Nitratproduktion. Oecol Plant 9: 219–230

    CAS  Google Scholar 

  • Runge M (1978) Die Stickstoff-Mineralisation im Boden einer montanen Goldhaferwiese. Oecol Plant 13: 147–162

    Google Scholar 

  • Sabey BR (1969) Influence of soil moisture tension on nitrate accumulation in soils. Soil Sci Soc Am Proc 33:263–266

    CAS  Google Scholar 

  • Schaefer R (1964) Observations sur l’effet de la température d’incubation, en particulier d’un gel répété, sur l’activité de nitrification et sur le dégagement de CO2 dans des mull calciques d’une chaîne de sols hydromorphes. Ann Inst Pasteur 107: 534–549

    CAS  Google Scholar 

  • Schmidt EL (1978) Nitrifying microorganisms and their methodology. In: Schlessinger D (ed) Microbiology - 1978. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Schräder LE (1978) Uptake, accumulation, assimilation and transport of nitrogen in higher plants. In: Nielsen DR, MacDonald JG (eds) Nitrogen in the environment, vol II. Academic Press, London New York

    Google Scholar 

  • Schreven van DA (1965) Quelques aspects microbiologiques du metabolisme de l’azote dans le sol. Ann Inst Pasteur 109: 19–49

    Google Scholar 

  • Schreven van DA (1967) The effect of intermittent drying and wetting of a calcareous soil on carbon and nitrogen mineralisation. Plant Soil 26: 14–32

    Google Scholar 

  • Schreven van DA (1968 a) The production of mineral nitrogen by soil samples, contained in polyethylene bags, under field conditions and in the laboratory. Plant Soil 24:170–183

    Google Scholar 

  • Schreven van DA (1968 b) Mineralization of the carbon and nitrogen of plant material added to soil and of the soil humus during incubation following periodic drying and rewetting of the soil. Plant Soil 28:226–245

    Google Scholar 

  • Schwoerbel J, Tillmanns GC (1972) Ammonium-Adaptation bei submersen Phanerogamen in situ. Arch Hydrobiol Suppl 42: 139–141

    Google Scholar 

  • Schwoerbel J, Tillmanns GC (1974) Stickstoffaufnahme aus dem Wasser und Nitratreduktase-Aktivität bei submersen Wasserpflanzen: Fontinalis antipyreticaL. Arch Hydrobiol Suppl 47: 282–294

    CAS  Google Scholar 

  • Serra JL, Llama MJ, Cadenas E (1978) Nitrate utilization by the diatom Skeletonema costatum. Plant Physiol 62: 991–994

    PubMed  CAS  Google Scholar 

  • Shaner DL, Boyer JS (1976a) Nitrate reductase activity in maize (Zea maysL.) leaves. I. Regulation by nitrate flux. Plant Physiol 58: 499–504

    CAS  Google Scholar 

  • Shaner DL, Boyer JS (1976b) Nitrate reductase activity in maize (Zea mays L.) leaves. II. Regulation by nitrate flux at low leaf water potential. Plant Physiol 58: 505–509

    CAS  Google Scholar 

  • Sindhu MA, Cornfield AH (1967) Comparative effects of varying levels of chlorides and sulphates of sodium, potassium, calcium and magnesium on ammonification and nitrification during incubation of soil. Plant Soil 27: 468–472

    CAS  Google Scholar 

  • Skujins J, Trujillo y Fulgham P (1978) Nitrification in Great Basin desert soils. In: West NE, Skujins J (eds) Nitrogen in desert ecosystems. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  • Smiley RW (1974) Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci Soc Am Proc 38: 795–799

    CAS  Google Scholar 

  • Smith FW, Thompson JF (1971) Regulation of nitrate reductase in excised barley roots. Plant Physiol 48: 219–223

    PubMed  CAS  Google Scholar 

  • Smith WH (1981) Air pollution and forests. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Sommer K, Mertz M (1974) Wachstum, Ertrag und Mineralstoffaufnahme von Pflanzen — beeinflußt durch Ammonium oder Nitrat. Landwirtsch Forsch 27: 8–30

    CAS  Google Scholar 

  • Soulides DA, Clark FE (1958) Nitrification in grassland soils. Soil Sci Soc Am Proc 22: 308–311

    CAS  Google Scholar 

  • Stanford G (1978) Evaluation of ammonium release by alkaline permanganate extraction as an index of soil nitrogen availability. Soil Sci 126: 244–253

    CAS  Google Scholar 

  • Stanford G, Epstein E (1974) Nitrogen mineralization-water relationships in soils. Soil Sci Soc Am Proc 38: 103–107

    Google Scholar 

  • Stanford G, Smith SJ (1978) Oxidative release of potentially mineralizable soil nitrogen by acid permanganate extraction. Soil Sci 126: 210–219

    CAS  Google Scholar 

  • Stanford G, Frere MH, Schwaninger DH (1973) Temperature coefficient of soil nitrogen mineralization. Soil Sci 115: 321–323

    Google Scholar 

  • Stewart GR, Rhodes D (1978) Nitrogen metabolism of halophytes. III. Enzymes of ammonium assimilation. New Phytol 80: 307–316

    CAS  Google Scholar 

  • Stewart GR, Lee JA, Orebamjo TO (1972) Nitrogen metabolism of halophytes. I. Nitrate reductase activity in Suaeda maritima. New Phytol 71: 263–267

    CAS  Google Scholar 

  • Stewart GR, Lee JA, Orebamjo TO (1973) Nitrogen metabolism of halophytes. II. Nitrate availability and utilization. New Phytol 72: 539–546

    CAS  Google Scholar 

  • Street HE, Sheat DEG (1958) The absorption and availability of nitrate and ammonia. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol VIII. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Süchting H (1950) Über die Stickstoffdynamik der Waldböden und die Stickstoffernährung des Waldbestandes. Z. Pflanzenernaehr Dueng Bodenkd 48: 1–37

    Google Scholar 

  • Theron JJ (1951) The influence of plants on the mineralization of nitrogen and the maintenance of organic matter in the soil. J Agric Sci 411: 289–296

    Google Scholar 

  • Thiagalingam K, Kanehiro Y (1973) Effect of temperature on nitrogen transformation in Hawaiian soils. Plant Soil 38: 177–189

    CAS  Google Scholar 

  • Thompson LM, Black CA, Zoellner JA (1954) Occurrence and mineralization of organic phosphorus in soils, with particular reference to associations with nitrogen, carbon and pH. Soil Sci 77: 185–196

    CAS  Google Scholar 

  • Tölle H (1968) Humus- und Stickstoffvorräte grundwassernaher und -ferner Böden im Nordostdeutschen Tiefland. Arch Forstwes 17: 889–913

    Google Scholar 

  • Toetz DW (1974) Uptake and translocation of ammonia by freshwater hydrophytes. Ecology 55: 199–201

    CAS  Google Scholar 

  • Townsend LR, Blatt CR (1966) Lowbush Blueberry: Evidence for the absence of a nitrate reducing system. Plant Soil 25: 456–460

    Google Scholar 

  • Travis RL, Jordan WR, Huffaker RC (1970) Light and nitrate requirements for induction of nitrate reductase activity in Hordeum vulgare. Physiol Plant 45: 678–685

    Google Scholar 

  • Tyler G (1975) Heavy metal pollution and mineralization of nitrogen in forest soils. Nature (London) 255: 701–702

    CAS  Google Scholar 

  • Tyler KB, Broadbent FE, Hill GN (1959) Low-temperature effects on nitrification in four California soils. Soil Sci 87: 123–129

    CAS  Google Scholar 

  • Walker N (1978) On the diversity of nitrifiers in nature. In: Schlessinger D (ed) Microbiology- 1978. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Weber DF, Gainey PL (1962) Relative sensitivity of nitrifying organisms to hydrogen ions in soils and in solutions. Soil Sci 94: 138–145

    CAS  Google Scholar 

  • West NE, Klemmedson JO (1978) Structural distribution of nitrogen in desert ecosystems. In: West NE, Skujins J (eds) Nitrogen in desert ecosystems. Dowden Hutchinson and Ross, Stroudsburg

    Google Scholar 

  • Wetselaar R (1968) Soil organic nitrogen mineralization as affected by low soil water potentials. Plant Soil 29: 9–17

    CAS  Google Scholar 

  • Williams JT (1968) The nitrogen relations and other ecological investigations on wet fertilized meadows. Veroeff Geobot Inst Eidg Tech Hochsch Stift Ruebel Zuerich 41: 69–193

    Google Scholar 

  • Wilson DO (1977) Nitrification in three soils amended with zinc sulfate. Soil Biol Biochem 9: 277–288

    CAS  Google Scholar 

  • Wimpenny JW (1969) Oxygen and carbon dioxide as regulators of microbial growth and metabolism. In: Meadows PM, Pirt SJ (eds) Microbial growth. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Wit de CT, Dijkshoorn W, Noggle JC (1963) Ionic balance and growth of plants. Agric Res Rep (Wageningen) 69, 15: 1–68

    Google Scholar 

  • Wittich W (1930) Untersuchungen über den Einfluß des Kahlschlages auf den Bodenzustand. Mitt Forstwirtsch Forstwiss 1: 438–506

    Google Scholar 

  • Wittich W (1933) Untersuchungen in Nordwestdeutschland über den Einfluß der Holzart auf den biologischen Zustand des Bodens. Mitt Forstwirtsch Forstwiss 4: 115

    Google Scholar 

  • Wong-Chong GM, Loehr RC (1975) The kinetics of microbial nitrification. Water Res 9: 1099–1106

    CAS  Google Scholar 

  • Younis MA, Pauli AW, Mitchell HL, Stickler FC (1965) Temperature and its interaction with light and moisture in nitrogen metabolism of corn ( Zea mays L.) seedlings. Crop Sci 5: 321–326

    CAS  Google Scholar 

  • Zamyatina VB (1971) Nitrogen balance studies using 15N-labelled fertilizers (Based on nitrogen-15 studies in the USSR). In: Nitrogen-15 in soil-plant studies. IAEA Proc Ser

    Google Scholar 

  • Zimmek GE (1975) Die Mineralstickstoff-Versorgung einiger Salzrasen-Gesellschaften des Graswarders vor Heiligenhafen/Ostsee. Diss, Math Nat Fak Univ Göttingen

    Google Scholar 

  • Zinke PJ (1969) Nitrogen storage of several California forest soil-vegetation systems. In: Biology and ecology of nitrogen. Natl Acad Sci, Washington DC

    Google Scholar 

  • Zöttl H (1958) Die Bestimmung der Stickstoffmineralisation im Waldhumus durch den Brutversuch. Z Pflanzenernaehr Dueng Bodenkd 81: 35–50

    Google Scholar 

  • Zöttl H (1960a) Methodische Untersuchungen zur Bestimmung der Mineralstickstoff-Nachlieferung des Waldbodens. Forstwiss Centralbl 79: 72–90

    Google Scholar 

  • Zöttl H (1960 b) Die Mineralstickstoffanlieferung in Fichten- und Kiefernbeständen Bayerns. Forstwiss Centralbl 79:221–236

    Google Scholar 

  • Zöttl H (1960c) Dynamik der Stickstoffmineralisation im organischen Waldbodenmaterial. I. Beziehung zwischen Bruttomineralisation und Nettomineralisation. Plant Soil 13: 166–182

    Google Scholar 

  • Zöttl H (1960d) Dynamik der Stickstoffmineralisation im organischen Waldbodenmaterial. II. Einfluß des Stickstoffgehaltes auf die Mineralstickstoff-Nachlieferung. Plant Soil 13: 183–206

    Google Scholar 

  • Zöttl H (1960e) Dynamik der Stickstoffmineralisation im organischen Waldbodenmaterial. III. pH-Wert und Mineralstickstoff-Nachlieferung. Plant Soil 13: 207–223

    Google Scholar 

  • Zöttl H (1960f) Beziehung zwischen Mineralstickstoff-Anhäufung und Kohlendioxyd- Produktion von Waldhumusproben im Brutversuch. Z Pflanzenernaehr Dueng Bodenkd 90: 132–138

    Google Scholar 

  • Zöttl H (1965) Anhäufung und Umsetzung von Stickstoff im Waldboden. Ber Dtsch Bot Ges 78: 167–180

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin·Heidelberg

About this chapter

Cite this chapter

Runge, M. (1983). Physiology and Ecology of Nitrogen Nutrition. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology III. Encyclopedia of Plant Physiology, vol 12 / C. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68153-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68153-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68155-4

  • Online ISBN: 978-3-642-68153-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics