Skip to main content

Transcriptional Control Regions: Nucleotide Sequence Requirements for Initiation by RNA Polymerase II and III

  • Chapter
Initiation Signals in Viral Gene Expression

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 93))

Abstract

Until recently, the nucleotide sequences involved in the initiation of transcription within eukaryotic cells remained a mystery. Now, thanks to a variety of technological advances, it is possible to identify these sequences and appreciate their functions in the transcription process. Cloning technology enables one to isolate and study genes individually. Rapid DNA and RNA sequencing procedures facilitate nucleotide sequence analysis of both the genes and the RNAs they encode. A variety of in vitro mutagenesis protocols makes it possible to direct deletions and single base-pair changes to specific nucleotide sequences. Selection procedures are available to return genes which have been manipulated in vitro to cells for analysis. And, finally, in vitro systems have been developed which accurately transcribe either RNA polymerase II- or polymerase Ill-type genes. Genes can now be isolated, sequenced, mutated, and their transcription studied both in vivo and in vitro. As a result, specific functions in the transcription process can be related to specific nucleotide sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akusjarvi G, Mathews MB, Andersson P, Vennstrom B, Pettersson U (1980) Structure of genes for virus-associated RNAI and RNAII of adenovirus type 2. Proc Natl Acad Sci USA 77: 2424–2428

    PubMed  CAS  Google Scholar 

  • Alwine C, Reed SI, Stark GR (1977) Characterization of the autoregulation of SV40 gene A. J Virol 24: 22–27

    PubMed  CAS  Google Scholar 

  • Axel R, Cedar H, Felsenfeld G (1973) Synthesis of globin RNA from duck-reticulocyte chromatin in vitro. Proc Natl Acad Sci USA 70: 2029–2032

    PubMed  CAS  Google Scholar 

  • Baker CC, Ziff EB (1980) Biogenesis, structures, and sites of encoding of the 5’ termini of adenoviras-2 mRNAs. Cold Spring Harbor Symp Quant Biol 44: 415–428

    PubMed  CAS  Google Scholar 

  • Baker CC, Ziff EB (1981) Promoters and heterogeneous 5’ termini of the messenger RNAs of adenovirus-2. J Mol Biol (in press)

    Google Scholar 

  • Baker CC, Herisse J, Courtois C, Galibert F, Ziff E (1979) Messenger RNA for the Ad2 DNA binding protein: DNA sequences encoding the first leader and heterogeneity at the mRNAs 5’ end. Cell 18: 569–580

    PubMed  CAS  Google Scholar 

  • Barrett T, Maryanka D, Hamlyn PH, Gould HJ (1974) Nonhistone proteins control gene expression in reconstituted chromatin. Proc Natl Acad Sci USA 71: 5057–5061

    PubMed  CAS  Google Scholar 

  • Bendig MM, Thomas T, Folk WR (1980) Regulatory mutants of polyoma virus defective in DNA replication and the synthesis of early proteins. Cell 20: 401–409

    PubMed  CAS  Google Scholar 

  • Benoist C, Chambon P (1980) Deletions covering the putative promoter region of early mRNAs of simian virus 40 do not abolish T antigen expression. Proc Natl Acad Sci USA 77: 3865–3869

    PubMed  CAS  Google Scholar 

  • Benoist C, O’Hare K, Breathnach R, Chambon P (1980) The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res 8: 127–142

    PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977) Ultraviolet mapping of the adenovirus 2 early promoters. Cell 12: 45–55

    PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    PubMed  CAS  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early Ad5 gene product regulates synthesis of early viral mRNAs. Cell 17: 935–944

    PubMed  CAS  Google Scholar 

  • Birkenmeier EH, Brown DD, Jordan E (1978) A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell 15: 1077–1086

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Sakonju S, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3’ border of the region. Cell 19: 27–35

    PubMed  CAS  Google Scholar 

  • Brown KD, Bennett GN, Lee F, Schweingruber ME, Yanofsky C (1978) RNA polymerase interaction at the promoter-operator region of the tryptophan operon of E. coli S. typhimurium. J Mol Biol 121: 153–177

    PubMed  CAS  Google Scholar 

  • Buchman AR, Burnett L, Berg P (1980) In: Tooze J (ed) DNA tumor viruses. Cold Spring Harbor Laboratory, New York, pp 799–829

    Google Scholar 

  • Busslinger M, Portmann R, Irminger JC, Birnstiel M (1980) Ubiquitous and gene-specific regulatory 5’ sequences in a sea urchin histone DNA clone coding for histone protein variants. Nucleic Acids Res 8: 957–978

    PubMed  CAS  Google Scholar 

  • Canaani D, Kahana C, Mukamel A, Groner Y (1979) Sequence heterogeneity at the 5’ termini of late simian virus 40 19S and 16S mRNAs. Proc Natl Acad Sci USA 76: 3078–3082

    PubMed  CAS  Google Scholar 

  • Celma ML, Pan J, Weissman SM (1977) Studies of low molecular weight RNA from cells infected with adenovirus 2. II. Heterogeneity at the 5’ end of VA-RNA L J Biol Chem 252: 9043–9046

    PubMed  CAS  Google Scholar 

  • Chao MV, Gralla J, Martinson HG (1979) DNA sequence directs placement of histone cores on restriction fragments during nucleosome formation. Biochemistry 8: 1068–1074

    Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134: 265–303

    PubMed  CAS  Google Scholar 

  • Cochet M, Gannon F, Hen R, Maroteaux L, Perrin F, Chambon P (1979) Organization and sequence studies of the 17-piece chicken conalbumin gene. Nature 282: 567–574

    PubMed  CAS  Google Scholar 

  • Contreras R, Fiers W (1981) Initiation of transcription by RNA polymerase II in permeable, SV-40- infected or noninfected CV1 cells: evidence for multiple promoters of SV40 late transcription. Nucleic Acids Res 9: 215–236

    PubMed  CAS  Google Scholar 

  • Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic protein-coding genes. Science 209: 1406–1414

    PubMed  CAS  Google Scholar 

  • DeFranco D, Schmidt O, Soli D (1980) The control regions for eukaryotic tRNA gene transcription. Proc Natl Acad Sci USA 77: 3365–3368

    PubMed  CAS  Google Scholar 

  • Denis H, Wegnez M (1973) Recherches biochimiques sur l’oogenese. 7. Synthese et maturation du RNA 5S dans les petis oocytes de Xenopus laevis. Biochimie 55: 1137–1151

    PubMed  CAS  Google Scholar 

  • Duncan CH, Jagadeeswaran P, Wang RRC, Weissman SM (1981) Alu family RNA polymerase EI transcriptional units interspersed in human beta-like globin genes: structural analysis of templates and transcripts. Gene 13: 185–196

    PubMed  CAS  Google Scholar 

  • Efstratiadis A, Posakony J, Maniatis T, Lawn R, O’Connell C, Spiritz R, DeRiel J, Forget B, Weissman S, Slightom J, Blechl A, Smithies O, Baralle F, Shoulders C, ProudfootN (1980) The structure and evolution of the human P-globin gene family. Cell 21: 653–668

    CAS  Google Scholar 

  • Engelke DR, Ng S-Y, Shastry BS, Roeder RG (1980) Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19: 717–728

    PubMed  CAS  Google Scholar 

  • Evans R, Fraser N, Ziff E, Weber J, Wilson M, Darnell J (1977) The initiation sites for RNA tran-scription in Ad2 DNA. Cell 12:733-739 Felsenfeld G (1978) Chromatin. Nature 271: 115 - 121

    Google Scholar 

  • Ferdinand FJ, Brown M, Khoury G (1977) Characterization of early SV40 transcriptional complexes: late transcription in the absence of detectable DNA replication. Proc Natl Acad Sci USA 74: 5443–5447

    PubMed  CAS  Google Scholar 

  • Fiers W, Contreras R, Haegeman G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978) Complete nucleotide sequence of SV40 DNA. Nature 273: 113–120

    PubMed  CAS  Google Scholar 

  • Flavell A, Cowie A, Legon S, Kamen R (1979) Multiple 5’ -terminal cap structures in late polyoma virus RNA. Cell 16: 357–371

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Cowie A, Arrand JR, Kamen R (1980) Localization of three major capped 5’ ends of polyoma virus late mRNAs within a single tetranucleotide sequence in the viral genome. J Virol 33: 902–908

    PubMed  CAS  Google Scholar 

  • Ford PJ, Brown DD (1976) Sequences of 5S ribosomai DNA from Xenopus mulleri and the evolution of 5S gene-coding sequences. Cell 8: 485–493

    PubMed  CAS  Google Scholar 

  • Ford JP, Hsu M-T (1978) Transcription pattern of in vivo-labeled late simian virus 40 RNA: equi molar transcription beyond the mRNA 3’ terminus. J Virol 28: 795–801

    PubMed  CAS  Google Scholar 

  • Fowlkes DM, Shenk T (1980) Transcriptional control regions of the adenovirus VAI RNA gene. Cell 22: 405–413

    PubMed  CAS  Google Scholar 

  • Fraser NW, Sehgal PB, Darnell JE (1978) DRB-induced premature termination of late adenovirus transcription. Nature 272: 590–593

    PubMed  CAS  Google Scholar 

  • Fraser NW, Sehgal PB, Darnell JE (1979) Multiple discrete sites for premature RNA chain termination late in adenovirus-2 infection: enhancement by 5,6-dicWoro-0β-D-ribofuranosylbenzimi dazole. Proc Natl Acad Sci USA 76: 2571–2575

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Shatkin A (1976) Differential synthesis of blocked and unblocked 5’ termini in reo virus mRNA: effect of pyrophosphate and pyrophosphatase. Proc Natl Acad Sci 73: 3448–3452

    PubMed  CAS  Google Scholar 

  • Furuichi Y, Muthukrishnan S, Tomasz J, Shatkin AJ (1976) Mechanism of formation of reovirus mRNA 5’-terminal blocked and methylated sequence, m7GpppGmpC. J Biol Chem 251: 5043–5053

    PubMed  CAS  Google Scholar 

  • Galas DJ, Schmitz A (1978) DNAase footprinting: a simple method for the detection of protein- DNA binding specificity. Nucleic Acids Res 5: 3157–3170

    PubMed  CAS  Google Scholar 

  • Gannon F, O’Hare K, Perrin F, LePennec JP, Benoist C, Cochet M, Breathnach R, Royal A, Garapin A, Cami B, Chambon P (1979) Organization and sequences at the 5’ end of a cloned complete ovalbumin gene. Nature 278: 428–434

    PubMed  CAS  Google Scholar 

  • Garel A, Axel R (1976) Selective digestion of transcriptionally active ovalbumin gene from oviduct nuclei. Proc Natl Acad Sci USA 73: 3966–3970

    PubMed  CAS  Google Scholar 

  • Ghosh PK, Lebowitz P, Frisque RJ, Gluzman Y (1981) Identification of a promoter component involved in positioning the 5’ -termini of the simian virus 40 early mRNAs. Proc Natl Acad Sci USA 78: 100–104

    PubMed  CAS  Google Scholar 

  • Ghosh P, Reddy V, Swinscoe J, Lebowitz P, Weissman S (1978) The heterogeneity and 5’terminal structures of the late RNAs of SV40. J Mol Biol 126: 813–846

    PubMed  CAS  Google Scholar 

  • Gilbert W (1976) In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory, New York, pp 193–205

    Google Scholar 

  • Gilmour RS, Paul J (1973) Tissue-Specific transcription of the globin gene in isolated chromatin. Proc Natl Acad Sci USA 70: 3440–3442

    PubMed  CAS  Google Scholar 

  • Gluzman Y, Sambrook JF, Frisque RJ (1980) Expression of early genes of origin-defective mutants of SV40. Proc Natl Acad Sci USA 77: 3898–3902

    PubMed  CAS  Google Scholar 

  • Goldberg S, Weber J, Darnell JE (1977) The definition of a large viral transcription unit late in Ad2 infection of HeLa cells: mapping by effect of ultraviolet irradiation. Cell 10: 617–621

    PubMed  CAS  Google Scholar 

  • Groner Y, Hurwitz J (1975) Synthesis of RNA containing a methylated blocked 5’ terminus by HeLa nuclear homogenates. Proc Natl Acad Sci USA 72: 2930–2934

    PubMed  CAS  Google Scholar 

  • Grosschedl R, Birnstiel ML (1980) Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo. Proc Natl Acad Sci USA 77: 1432–1436

    PubMed  CAS  Google Scholar 

  • Gruss P, Dhar R, Khoury G (1981) The SV40 tandem repeats as an element of the early promoter. Proc Natl Acad Sci USA 78: 943–947

    PubMed  CAS  Google Scholar 

  • Gruss P, Khoury G (1981) Expression of SV40 rat preproinsulin recombinants in monkey kidney cells: use of preproinsulin RNA processing signals. Proc Natl Acad Sci USA 78: 133–137

    PubMed  CAS  Google Scholar 

  • Guilfoyle R, Weinmann R (1981) The control region for adenovirus VA RNA transcription. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Haegeman G, Fiers W (1978) Localization of the 5’ terminus of late SV40 mRNA. Nucleic Acids Res 5: 2359–2371

    PubMed  CAS  Google Scholar 

  • Haegeman G, Fiers W (1980) Characterization of the 5’ -terminal cap structures of early simian virus 40 mRNA. J Virol 35: 955–961

    PubMed  CAS  Google Scholar 

  • Haegeman G, Van Heuverswyn H, Gheysen D, Fiers W (1979) Heterogeneity of the 5’ terminus of late mRNA induced by a viable SV40 deletion mutant J Virol 31: 484–493

    CAS  Google Scholar 

  • Hamer DH, Leder P (1979) Expression of the chromosomal mouse 3-major-globin gene cloned in SV40. Nature 281: 35–40

    PubMed  CAS  Google Scholar 

  • Harada F, Ikawa Y (1979) A new series of RNAs associated with the genome of spleen focus forming virus ( SFFV) and poly(A)-containing RNA from SFFV-infected cells. Nucleic Acids Res 7: 895–908

    PubMed  CAS  Google Scholar 

  • Harada F, Kato N, Hoshino H (1979) Series of 4.5S RNAs associated with poly(A)-containing RNAs of rodent cells. Nucleic Acids Res 7: 909–917

    PubMed  CAS  Google Scholar 

  • Harada S, Kato N (1980) Nucleotide sequences of 4.5S RNA associated with polyA-containing RNAs of mouse and hamster cells. Nucleic Acids Res 8: 1273–1285

    PubMed  CAS  Google Scholar 

  • Hentschel C, Irminger JC, Bucher P, Birnstiel M (1980) Sea urchin histone mRNA termini are located in gene regions downstream from putative regulatory sequences. Nature 285: 147–151

    PubMed  CAS  Google Scholar 

  • Hofer E, Darnell JE (1981) The primary transcription unit of the mouse (3-major globin gene. Cell 23: 585–593

    PubMed  CAS  Google Scholar 

  • Honda BM, Roeder RG (1980) Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22: 119–126

    PubMed  CAS  Google Scholar 

  • Honda H, Kaufman RJ, Manley J, Gefter M, Sharp PA (1980) Transcription of SV40 in a HeLa whole cell extract J Biol Chem 256: 478–482

    Google Scholar 

  • Houck CM, Rinehart FP, Schmid CW (1979) A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol 132: 289–306

    PubMed  CAS  Google Scholar 

  • Hu S-L, Manley J (1981) DNA sequence required for initiation of transcription in vitro from the major promoter of adenovirus-2. Proc Natl Acad Sci USA 78: 820–824

    PubMed  CAS  Google Scholar 

  • Jakobovits EB, Bratosin S, Aloni Y (1980) A nucleosome-free region in SV40 minichromosomes. Nature 285: 263–265

    PubMed  CAS  Google Scholar 

  • Jelinek W, Leinwand L (1978) Low molecular weight RNAs hydrogen-bonded to nuclear and cytoplasmic poly(A)-terminated RNA from cultured Chinese hamster ovary cells. Cell 15: 205–214

    PubMed  CAS  Google Scholar 

  • Jessel D, Landau T, Hudson J, Lalor T, Tenen D, Livingston DM (1976) Identification of regions of the SV40 genome which contain preferred SV40 T antigen-binding sites. Cell 8: 535–545

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979a) Isolation of Ad5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979b) An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Natl Acad Sci USA 76: 3665–3669

    PubMed  CAS  Google Scholar 

  • Katinka M, Yaniv M, Vasseur M, Blangy D (1980) Expression of polyoma early functions in mouse embryonal carcinoma cells depends on sequence rearrangements in the beginning of the late region. Cell 20: 393–399

    PubMed  CAS  Google Scholar 

  • Keene MA, Corces V, Lowenhaupt K, Elgin SRB (1981) DNase I hypersensitive sites in Drosophila chromatin occur at the 5’ -ends of regions of transcription. Proc Natl Acad Sci USA 78: 143–146

    PubMed  CAS  Google Scholar 

  • Khoury G, May E (1977) Regulation of early and late SV40 transcription: overproduction of early viral RNA in the absence of a functional T antigen. J Virol 77: 167–176

    Google Scholar 

  • Konkel D, Tilghman S, Leder P (1978) The sequence of the chromosomal mouse β-globin major gene: homologies in capping, splicing and poly A sites. Cell 15: 1125–1132

    PubMed  CAS  Google Scholar 

  • Korn LJ, Birkenmeier EH, Brown DD (1979) Transcription initiation of Xenopus 5S ribosomal RNA genes in vitro. Nucleic Acids Res 7: 947–958

    PubMed  CAS  Google Scholar 

  • Korn LT, Brown DD (1978) Nucleotide sequence of Xenopus borealis oocyte 5S DNA: comparison of sequences that flank several related eukaryotic genes. Cell 15: 1145–1156

    PubMed  CAS  Google Scholar 

  • Koski RA, Clarkson SG, Kuijan J, Hall BD, Smith M (1980) Mutations of the yeast SUP4 tRNATyr locus: Transcription of the mutant genes in vitro. Cell 22: 415–425

    PubMed  CAS  Google Scholar 

  • Kressmann A, Hofstetter H, DiCapua E, Grosschedl R, Birnstiel ML (1979) A tRNA gene of Xenopus Laevis contains at least two sites promoting transcription. Nucleic Acids Res 7: 1749–1763

    PubMed  CAS  Google Scholar 

  • Laub O, Bratosin S, Horowitz M, Aloni Y (1979) The initiation of transcription of SV40 DNA at late time after infection. Virology 92: 310–323

    PubMed  CAS  Google Scholar 

  • Lerner MR, Andrews NC, Miller G, Steitz JA (1980) Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 78: 805–809

    Google Scholar 

  • Lerner MR, Boyle JA, Hardin JA, Steitz JA (1981) Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211: 400–402

    PubMed  CAS  Google Scholar 

  • Levy A, Noll M (1980) Multiple phases of nucleosomes in the hsp 70 genes of Drosophila melanogaster. Nucleic Acids Res 8: 6959–6968

    Google Scholar 

  • Lewis J, Mathews M (1980) Control of adenovirus early gene expression: a class of immediate early products. Cell 21: 303–313

    PubMed  CAS  Google Scholar 

  • Louis C, Schedl P, Sanmal B, Worcel A (1980) Chromatin structure of the 5S RNA genes of D. melanogaster. Cell 22: 387–392

    PubMed  CAS  Google Scholar 

  • Luse DS, Roeder RG (1980) Accurate transcription initiation on a purified mouse β-globin DNA fragment in a cell-free system. Cell 20: 691–699

    PubMed  CAS  Google Scholar 

  • Manley JL, Fire A, Cano A, Sharp PA, Gefter ML (1980) DNA-Dependent transcription of adenovirus genes in a soluble whole-cell extract Proc Natl Acad Sci USA 77: 3855–3859

    CAS  Google Scholar 

  • Manley JL, Sharp PA, Gefter ML (1979) RNA synthesis in isolated nuclei in vitro: initiation of the Ad2 major late mRNA precursor. Proc Natl Acad Sci USA 76: 160–164

    PubMed  CAS  Google Scholar 

  • Matsui T, Segall J, Weil PA, Roeder RG (1980) Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 255: 11992–11996

    PubMed  CAS  Google Scholar 

  • McKnight SL (1980) The nucleotide sequence of the herpes simplex thymidine kinase gene. Nucleic Acids Res 8: 5949–5964

    PubMed  CAS  Google Scholar 

  • Minty A, Newmark P (1980) Gene regulation: new, old and remote controls. Nature 288: 210–211

    PubMed  CAS  Google Scholar 

  • Moss B, Gershowitz A, Wei C-M, Boone R (1976) Formation of the guanylylated and methylated 5’-terminus of vaccinia virus mRNA. Virology 72: 341–351

    PubMed  CAS  Google Scholar 

  • Musich PR, Maio JJ, Brown FL (1977) Interactions of a phase relationship between restriction sites and chromatin subunits in African green monkey and calf nuclei. J Mol Biol 117: 637–655

    PubMed  Google Scholar 

  • Ng SY, Parker CS, Roeder RG (1979) Transcription of cloned Xenopus 5S RNA genes by X. laevis RNA polymerase IE in reconstituted systems. Proc Natl Acad Sci USA 76: 136–140

    PubMed  CAS  Google Scholar 

  • Osborne TF, Schell RE, Burch-Jaffe E, Berget SJ, Berk AJ (1981) Mapping a eukaryotic promoter: a DNA sequence required for in vivo expression of adenovirus pre-early functions. Proc Natl Acad Sci USA 78: 1381–1385

    PubMed  CAS  Google Scholar 

  • Parker BA, Stark GR (1979) Regulation of SV40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. J Virol 31: 360–369

    PubMed  CAS  Google Scholar 

  • Pelham HRB, Brown DD (1980) A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA 77: 4170–4174

    PubMed  CAS  Google Scholar 

  • Peters GG, Harada F, Dahlberg JE, Panet A, Haseltine WA, Baltimore D (1977) Low-molecular- weight RNAs of Moloney Murine Leukemia Virus: identification of primer for RNA-directed DNA synthesis. J Virol 21: 1031–1041

    PubMed  CAS  Google Scholar 

  • Piatak M, Subramanian KN, Roy P, Weissman SM (1981) Late mRNA production by viable SV40 mutants with deletions in the leader region. J Mol Biol (in press)

    Google Scholar 

  • Piper PW (1979) Polyoma virus transcription early during productive infection of mouse 3T6 cells. J Mol Biol 131: 399–407

    PubMed  CAS  Google Scholar 

  • Ponder BAJ, Crawford LV (1977) The arrangement of nucleosomes in nucleoprotein complexes from polyoma virus and SV40. Cell 11: 35–49

    PubMed  CAS  Google Scholar 

  • Pribnow D (1975) Bacteriophage T7 early promoters: nucleotide sequences of two RNA polymerase binding sites. J Mol Biol 99: 419–443

    PubMed  CAS  Google Scholar 

  • Price P, Penman S (1972) A distinct RNA polymerase activity, synthesizing 5.5S, 5S and4S RNA in nuclei from Ad2-infected HeLa cells. J Mol Biol 70: 435–450

    PubMed  CAS  Google Scholar 

  • Reddy VB, Ghosh PK, Lebowitz P, Weissman SM (1978a) Gaps and duplicated sequences in the leaders of SV40 16S RNA. Nucleic Acids Res 5: 4195–4214

    PubMed  CAS  Google Scholar 

  • Reddy VB, Thimmappaya B, Dhar R, Subramanian KN, Zain S, Pan J, Ghosh PK, Celma ML, Weissman SM (1978b) The genome of SV40. Science 200: 494–502

    PubMed  CAS  Google Scholar 

  • Reddy VB, Ghosh P, Lebowitz P, Piatak M, Weissman SM (1979) Simian virus 40 early mRNAs: genomic localization of 3’ and 5’ termini and two major splices in mRNA from transformed and lytically infected cells. J Virol 30: 279–296

    PubMed  CAS  Google Scholar 

  • Reed S, Ferguson J, Davis RW, Stark GR (1975) T-Antigen binds to SV40 DNA at the origin of DNA replication. Proc Natl Acad Sci USA 72: 1605–1609

    PubMed  CAS  Google Scholar 

  • Reed SI, Stark GR, Alwine JC (1976) Autoregulation of SV40 gene A by T antigen. Proc Natl Acad Sci USA 73: 3083–3087

    PubMed  CAS  Google Scholar 

  • Rio D, Robbins A, Myers R, Tjian R (1980) Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. Proc Natl Acad Sci USA 77: 5706–5710

    PubMed  CAS  Google Scholar 

  • Roeder RG (1976) Eukaryotic nuclear RNA polymerase. In: Losick R, Chamberlin M (eds) RNA Polymerase, Cold Spring Harbor, New York

    Google Scholar 

  • Sakonju S, Bogenhagen DF, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5’ border of the region. Cell 19: 13–25

    PubMed  CAS  Google Scholar 

  • Schmitz A, Galas DJ (1979) The interaction of RNA polymerase and lac repressor with the lac control region. Nucleic Acids Res 6: 111–137

    PubMed  CAS  Google Scholar 

  • Scott WA, Wigmore DJ (1978) Sites in simian virus 40 chromatin which are preferentially cleaved by endonucleases. Cell 15: 1511–1518

    PubMed  CAS  Google Scholar 

  • Shatkin AJ (1978) Capping of eukaryotic mRNAs. Cell 9: 646–653

    Google Scholar 

  • Segall J, Matsui T, Roeder RG (1980) Multiple factors are required for the accurate transcription of purified genes by RNA polymerase in. J Biol Chem 255: 11986–11991

    PubMed  CAS  Google Scholar 

  • Sehgal PB, Fraser NW, Darnell JE (1979) Early Ad2 transcription units: only promoter-proximal RNA continues to be made in the presence of DRB. Virology 94: 185–191

    PubMed  CAS  Google Scholar 

  • Sekikawa K, Levine AJ (1981) Isolation and characterization of polyoma host range mutants that replicate in multipotential embryonal carcinoma cells. Proc Natl Sci USA 18: 1100–1104

    Google Scholar 

  • Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single family of 3’ coterminal mRNAs during early infection and five families at late times. Cell 22: 905–916

    PubMed  CAS  Google Scholar 

  • Shenk TE, Carbon J, Berg P (1976) Construction and analysis of viable deletion mutants of SV40. J Virol 18: 664–671

    PubMed  CAS  Google Scholar 

  • Siebenlist U, Simpson RB, Gilbert W (1980) E. coli RNA polymerase interacts homologously with two different promoters. Cell 20: 269–281

    CAS  Google Scholar 

  • Simpson RB (1979) Contacts between E. coli RNA polymerase and thymines in the lac UV5 pro moter. Proc Natl Acad Sci USA 76: 3233–3237

    PubMed  CAS  Google Scholar 

  • Soderlund H, Pettersson U, Venstrom B, Philipson L, Mathews MB (1976) A new species of virus coded low molecular weight RNA from cells infected with Ad2. Cell 7: 585–593

    PubMed  CAS  Google Scholar 

  • Soeda E, Arrand JR, Smolar N, Walsh JE, Griffin BE (1980) Coding potential and regulatory signals of the polyoma virus genome. Nature 283: 445–453

    PubMed  CAS  Google Scholar 

  • Spencer E, Loring J, Hurwitz J, Monroy G (1978) Enzymatic conversion of 5’ -phosphate-terminated RNA to 5’-di- and triphosphate-terminated RNA. Proc Natl Acad Sci USA 75: 4793–4797

    PubMed  CAS  Google Scholar 

  • Sprinzl M, Grueter F, Spelzhaus A, Gauss DH (1980) Compilation of tRNA sequences. Nucleic Acids Res 8:r1–r22

    PubMed  CAS  Google Scholar 

  • Steggles AW, Wilson GN, Kantor JA, Picciano DJ, Falvey AK, Anderson WF (1974) Cell-free transcription of mammalian chromatin: transcription of globin mRNA sequences from bone- marrow chromatin with mammalian RNA polymerase. Proc Natl Acad Sci USA 71: 1219–1223

    PubMed  CAS  Google Scholar 

  • Subramanian KN (1979) Segments of simian virus 40 DNA spanning most of the leader sequences of the major late viral mRNA are dispensible. Proc Natl Acad Sci USA 76: 2556–2560

    PubMed  CAS  Google Scholar 

  • Subramanian K, Shenk T (1978) Definition of the boundaries of the SV40 origin of DNA replication. Nucleic Acids Res 5: 3635–3642

    PubMed  CAS  Google Scholar 

  • Sundin O, Varshavsky A (1979) Staphylococcal nuclease makes a single non-random cut in the simian virus 40 minichromosome. J Mol Biol 132: 535–546

    PubMed  CAS  Google Scholar 

  • Tegtmeyer P (1974) Altered patterns of protein synthesis in infection by SV40 mutants. Cold Spring Harbor Symp Quant Biol 39: 9–16

    Google Scholar 

  • Tegtmeyer P, Schwartz M, Collins JK, Rundell K (1975) Regulation of tumor antigen synthesis by simian virus 40 gene A. J Virol 16: 168–178

    PubMed  CAS  Google Scholar 

  • Telford JL, Kressmann A, Koski RA, Grosschedl R, Muller F, Clarkson SG, Birnstiel ML (1979) Delimitation of a promoter for RNA polymerase III by means of a functional test

    Google Scholar 

  • Thimmappaya B, Jones N, Shenk T (1979) A mutation which alters initiation of transcription by RNA polymerase HI on the Ad5 chromosome. Cell 18: 947–954

    PubMed  CAS  Google Scholar 

  • Thompson J A, Radonovich MF, Salzman NP (1979) Characterization of the 5’ -terminal structure of SV40 early mRNAs. J Virol 31: 437–446

    PubMed  CAS  Google Scholar 

  • Tjian R (1978) The binding site on SV40 DNA for a T antigen-related protein. Cell 13: 165–179

    PubMed  CAS  Google Scholar 

  • Tjian R (1979) Protein-DNA interactions at the origin of SV40 DNA replication. Cold Spring Harbor Symp Quant Biol 43: 655–662

    PubMed  CAS  Google Scholar 

  • Van Heuverswyn H, Fiers W (1979) Nucleotide sequence of the Hind-C fragment of SV40 DNA. Eur J Biochem 100: 51–60

    PubMed  Google Scholar 

  • Van Ormondt H, Maat J, DeWaard A, Van der Eb A J (1978) The nucleotide sequence of the transforming Hpal-E fragment of adenovirus type 5 DNA. Gene 4: 309–328

    PubMed  Google Scholar 

  • Varshavsky AJ, Sundin O, Bohn M (1979) A stretch of “late” SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes. Cell 16: 453–466

    PubMed  CAS  Google Scholar 

  • Waldeck W, Fohring B, Chowdhurg K, Grass P, Sauer G (1978) Origin of DNA replication in papo vavirus chromatin is recognized by endogenous endonuclease. Proc Natl Acad Sci USA 75: 5964–5968

    PubMed  CAS  Google Scholar 

  • Wasylyk B, Derbyshire R, Guy A, Molko D, Roget A, Teolue R, Chambon P (1980a) Specific in vitro transcription of conalbumin gene is drastically decreased by a single-point mutation in TATA box homology sequence. Proc Natl Acad Sci USA 77: 7024–7028

    PubMed  CAS  Google Scholar 

  • Wasylyk B, Kedinger C, Corden J, Brinson O, Chambon P (1980b). Specific in vitro initiation of transcription on conalbumin and ovalbumin genes and comparison with adenovirus-2 early and late genes. Nature 285: 367–373

    PubMed  CAS  Google Scholar 

  • Weber J, Jelinek W, Darnell JE (1977) The definition of a large viral transcription unit late in Ad2 infection of HeLa cells: mapping of nascent RNA molecules labeled in isolated nuclei. Cell 10: 611–616

    PubMed  CAS  Google Scholar 

  • Weil PA, Luse DS, Segall J, Roeder RG (1979a) Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase H and DNA. Cell 18: 469–484

    PubMed  CAS  Google Scholar 

  • Weil PA, Segall J, Harris B, Ng S-Y, Roeder RG (1979b) Faithful transcription of eukaryotic genes by RNA polymerase III in systems reconstituted with purified DNA templates. J Biol Chem 254: 6163–6173

    PubMed  CAS  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 93: 848–858

    Google Scholar 

  • Wilson MC, Fraser NW, Darnell JE (1979) Mapping of RNA initiation sites by high doses of UV irradiation: evidence for three independent promoters within the left 11% of the Ad2 genome. Virology 94: 175–184

    PubMed  CAS  Google Scholar 

  • Winicov I, Perry RP (1976) Synthesis, methylation and capping of nuclear RNA by a subcellular system. Biochemistry 15: 5039–5046

    PubMed  CAS  Google Scholar 

  • Wittig B, Wittig S (1979) A phase relationship associates tRNA structural gene sequences with nucleosome cores. Cell 18: 1173–1183

    PubMed  CAS  Google Scholar 

  • Wu C (1980) The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286: 854–860

    PubMed  CAS  Google Scholar 

  • Wu GJ (1978) Adenovirus DNA-directed transcription of 5.5S RNA in vitro. Proc Natl Acad Sci USA 75: 2175–2179

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Jay G, Pastan I (1980b) Unusual features in the nucleotide sequence of a cDNA clone derived from the common region of avian sarcoma virus mRNA. Proc Natl Acad Sci USA 77: 176–180

    PubMed  CAS  Google Scholar 

  • Yamamoto T, deCrombrugghe B, Pastan I (1980a) Identification of a functional promoter in the long terminal repeat of Rous sarcoma virus. Cell 22: 787–797

    PubMed  CAS  Google Scholar 

  • Ziff E, Evans R (1978) Coincidence of the promoter and capped 5’ terminus of RNA from the adenovirus-2 major late transcription unit Cell 15: 1463–1475

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shenk, T. (1981). Transcriptional Control Regions: Nucleotide Sequence Requirements for Initiation by RNA Polymerase II and III. In: Shatkin, A.J. (eds) Initiation Signals in Viral Gene Expression. Current Topics in Microbiology and Immunology, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68123-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68123-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68125-7

  • Online ISBN: 978-3-642-68123-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics