Skip to main content

Neuronal Plasticity in the Newborn and Adult Feline Red Nucleus

  • Conference paper
Lesion-Induced Neuronal Plasticity in Sensorimotor Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Synaptic plasticity represents one of the possible mechanisms of recovery of functions after brain lesions. Recently we have increased our understanding on the nature of plastic changes in the central synapses. One remarkable phenomenon, axonal sprouting and formation of new synapses, seems to be particularly important for the recovery of functions. Although the phenomenon was first demonstrated in the 1950s (Edds 1953), it has been difficult to demonstrate unequivocally sprouting of central axonal connections. However, recent studies provided convincing evidence that sprouting occurs in central synapses and the newly formed synapses are functionally active (Rais-man 1969; Moore et al. 1971; Steward et al. 1973; Tsukahara et al. 1974; Cotman and Lynch 1976; Lund 1978; Tsukahara 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54: 957–1006

    PubMed  CAS  Google Scholar 

  • Bromberg MB, Gilman S (1978) Changes in rubral multiunit activity after lesions in the interpositus nucleus of the cat. Brain Res 152: 353–357

    Article  Google Scholar 

  • Castro A (1978) Projections of superior peduncle and the development of new connections in response to neonatal hemicerebellectomy. J Comp Neurol 78: 611–628

    Article  Google Scholar 

  • Cotman CW, Lynch GS (1976) Reactive synaptogenesis in the adult nervous system: the effects of partial deafferentation of new synapse formation. In: Barondes S (ed) Neuronal recognition. Plenum Press, New York, pp 69–108

    Chapter  Google Scholar 

  • Edds Jr MV (1953) Collateral nerve regeneration. Q Rev Biol 28: 260–276

    Article  PubMed  Google Scholar 

  • Goldberger ME, Murray M (1978) Recovery of movement and axonal sprouting may obey some of the same laws. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 73–96

    Google Scholar 

  • Hanaway J, Smith J (1978) Sprouting of corticorubral terminals in the cerebellar deafferented cat red nucleus. Soc Neurosci Abstr 4: 1507

    Google Scholar 

  • Kawaguchi S, Yamamoto T, Samejima A (1979) Electro-physiological evidence for axonal sprouting of cerebello-thalamic neurons in kittens after neonatal hemicerebellectomy. Exp Brain Res 36: 21–39

    Article  PubMed  CAS  Google Scholar 

  • Lim KH, Leong SK (1975) Aberrant bilateral projections from dentate and interposed nuclei in albino rats after neonatal lesions. Brain Res 96: 306–309

    Article  PubMed  CAS  Google Scholar 

  • Lund RD (1978) Development and plasticity of the brain. Oxford Univ Press, New York Oxford Moore RY, Björklund A, Stenevi U (1971) Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res 33: 13–35

    Google Scholar 

  • Murakami F, Tsukahara N, Fujito Y (1977a) Analysis of unitary EPSPs mediated by the newly-formed cortico-rubral synapses after lesion of the interpositus nucleus. Exp Brain Res 30: 233–243

    PubMed  CAS  Google Scholar 

  • Murakami F, Tsukahara N, Fujito Y (1977b) Properties of synaptic transmission of the newly formed corticorubral synapses after lesion of the nucleus interpositus of the cerebellum. Exp Brain Res 30: 245–258

    PubMed  CAS  Google Scholar 

  • Nah SH, Leong SK (1976a) Bilateral corticofugal projection to the red nucleus after neonatal lesions in the albino rat. Brain Res 107: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Nah SH, Leong SK (1976b) An ultrastructural study of the anomalous corticorubral projection following neonatal lesions in the albino rat. Brain Res 111: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Mizuno N, Konishi A, Sato M (1974) Synaptic reorganization of the red nucleus after chronic deafferentation from cerebellorubral fibers: an electron microscope study in the cat. Brain Res 82: 298–301

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y Mizuno N, Konishi A (1978) A quantitative electron microscope study of cerebellar axon terminals on the magnocellular red nucleus neurons in the cat. Brain Res 147: 17–27

    Article  PubMed  CAS  Google Scholar 

  • Purpura DP, Shofer RJ, Scarff T (1965) Properties of synaptic activities and spike potentials of neurons in immature neocortex. J Neurophysiol 28: 925–941

    PubMed  CAS  Google Scholar 

  • Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14: 25–48

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reis RF (ed) Neural theory and modeling. Stanford Univ Press, Stanford, pp 73–87

    Google Scholar 

  • Sato S, Tsukahara N (1976) Some properties of the theoretical membrane transients in Rall’s neuron model. J Theoret Biol 63: 151–163

    Article  CAS  Google Scholar 

  • Steward O, Cotman CW, Lynch GS (1973) Re-establishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: innervation by the contralateral entorhinal cortex. Exp Brain Res 18: 396–414

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara N (1978) Synaptic plasticity in the red nucleus. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 113–130

    Google Scholar 

  • Tsukahara N (1981) Synaptic plasticity in the mammalian central nervous system. Annu Rev Neurosci 4: 351–379

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara N, Fujito Y (1976) Physiological evidence of formation of new synapses from cerebrum in the red nucleus neurons following cross-union of forelimb nerves. Brain Res 106: 184–188

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara N, Kosaka K (1968) The mode of cerebral excitation of red nucleus neurons. Exp Brain Res 5: 102–117

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara N, Hultborn H, Murakami F (1974) Sprouting of cortico-rubral synapses in red nucleus neurons after destruction of the nucleus interpositus of the cerebellum. Experientia 30: 57–58

    Article  Google Scholar 

  • Tsukahara N Hultborn H, Murakami F, Fujito Y (1975a) Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J Neurophysiol 38: 1359–1372

    PubMed  CAS  Google Scholar 

  • Tsukahara N, Murakami F, Hultborn H (1975b) Electrical constants of neurons of the red nucleus. Exp Brain Res 23: 49–64

    Article  PubMed  CAS  Google Scholar 

  • Yumiya H, Larsen KD, Asanuma H (1979) Motor readjustment and input-output relationship of motor cortex following cross-connection fo forearm muscles in cats. Brain Res 177: 566–570

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsukahara, N., Fujito, Y. (1981). Neuronal Plasticity in the Newborn and Adult Feline Red Nucleus. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics