Skip to main content

Hormonal Regulatory Systems in Plants

  • Chapter
Hormonal Regulation of Development II

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 10))

Abstract

Over two millenia, observers of plants have noticed that one part of a plant may influence or control the activities of another part (see, e.g., Wiesner 1871, Dostal 1967). There are diverse examples, such as axillary buds growing out when the main bud has been removed (Goebel 1900, Snow 1925), excision of seeds from fleshy fruit promoting their germination (Albertus Magnus, thirteenth century, see Wareing 1965), cutting off the coleoptile tip preventing coleoptile tropisms (Darwin and Darwin 1880), removal of the embryo blocking starch degradation in grains (Brown and Morris 1890), partial defoliation altering bud growth (Loeb 1918) and removal of reproductive structures delaying the senescence of leaves and stems (Molisch 1928).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, London New York

    Google Scholar 

  • Addicott FT, Lynch RS (1955) Physiology of abscission. Annu Rev Plant Physiol 6:211–238

    CAS  Google Scholar 

  • Amrhein N (1977) The current status of cyclic AMP in higher plants. Annu Rev Plant Physiol 28:123–132

    CAS  Google Scholar 

  • Audus LJ (1959) Plant growth substances. Interscience, New York

    Google Scholar 

  • Audus LJ (1972) Plant growth substances Vol I. Chemistry and physiology. Barnes and Noble, New York

    Google Scholar 

  • Beyer EM Jr (1973) Abscission. Support for a role of ethylene modification of auxin transport. Plant Physiol 52:1–5

    PubMed  CAS  Google Scholar 

  • Beyer EM, Morgan PW (1969) Time sequence of the effect of ethylene on transport, uptake and decarboxylation of auxin. Plant Cell Physiol 10:787–799

    CAS  Google Scholar 

  • Biale J (1960) The postharvest biochemistry of tropical and subtropical fruits. Adv Food Res 10:293–354

    Google Scholar 

  • Bonner J, Bonner H (1948) The B vitamins as plant hormones. In: Harris R, Thimann KV (eds) Vitamins and hormones Vol 6. Academic Press, London New York, pp 225–275

    Google Scholar 

  • Bonner J, English J Jr (1938) A chemical and physiological study of traumatin, a plant wound hormone. Plant Physiol 13:331–348

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-l-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    PubMed  CAS  Google Scholar 

  • Braun AC (1969) Abnormal growth in plants. In: Steward FC (ed) Plant physiology Vol VB. Academic Press, London New York, pp 379–420

    Google Scholar 

  • Brown CL, McAlpine RG, Kormanik PP (1967) Apical dominance and form in woody plants: A reappraisal. Am J Bot 54:153–162

    Google Scholar 

  • Brown HT, Morris GH (1890) Researches on the germination of some of the Gramineae. J Chem Soc 57:458–528

    CAS  Google Scholar 

  • Burg SP, Burg EA (1965) Gas exchange in fruits. Physiol Plant 18:870–884

    CAS  Google Scholar 

  • Burg SP, Burg EA (1968) Auxinstimulated ethylene formation: its relationship to auxininhibited growth, root geotropism and plant processes. In: Wightman FW, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1275–1294

    Google Scholar 

  • Carr DJ, Reid DM (1968) The physiological significance of the synthesis of hormones in roots and of their export to the shoot system. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1169–1185

    Google Scholar 

  • Chen J, Meeuse BJD (1975) Purification and partial characterization of the two biologically active compounds from the inflorescence of Sauromatum guttatum Schott (Ara-ceae). Plant Cell Physiol 16:1–11

    Google Scholar 

  • Cleland CF (1978) The flowering enigma. BioSci 28:265–269

    Google Scholar 

  • Cleland R (1964) Role of endogenous auxin in the elongation of Avena leaf sections. Physiol Plant 17:126–135

    CAS  Google Scholar 

  • Cleland RE (1983) Changes in hormone concentration are important. Trends in Bioch Sci 1983:354–357

    Google Scholar 

  • Coombe BG (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:507–528

    Google Scholar 

  • Craker LE, Abeles FB (1969) Abscission: quantitative measurement with a recording abscissor. Plant Physiol 44:1139–1143

    PubMed  CAS  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Davey JE, van Staden J (1978) Cytokinin activity in Lupinus albus. II. Distribution in fruiting plants. Physiol Plant 43:82–86

    CAS  Google Scholar 

  • Davies FS, Mau SC, Nooden LD (1975) Auxin synthesis in crown gall tumor tissue: A comparison of three putative precursors. Physiol Plant 33:39–41

    CAS  Google Scholar 

  • Davison RM, Young H (1973) Abscisic acid content of xylem sap. Planta 109:95–98

    CAS  Google Scholar 

  • Dostal R (1967) On integration in plants. Harvard Univ Press, Cambridge Mass

    Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley and Sons, New York

    Google Scholar 

  • Evans LS, Tramontano WA (1981) Is trigonelline a plant hormone? Am J Bot 68:1282–1289

    CAS  Google Scholar 

  • Frankland B, Wareing PF (1962) Changes in endogenous gibberellins in relation to chilling of dormant seeds. Nature 194:313–314

    CAS  Google Scholar 

  • Frenkel C (1972) Involvement of peroxidase and indoleacetic acid oxidase isozymes from pear, tomato and blueberry fruit in ripening. Plant Physiol 49:757–763

    PubMed  CAS  Google Scholar 

  • Fuchs Y, Lieberman M (1968) Effects of kinetin, IAA and gibberellin on ethylene production and their interactions in growth of seedlings. Plant Physiol 43:2029–2036

    PubMed  CAS  Google Scholar 

  • Fuente RK de la, Leopold AC (1972) Two components of auxin transport. Plant Physiol 50:491–495

    PubMed  CAS  Google Scholar 

  • Goebel K (1900) Organography of plants especially of the Archegoniatae and Spermatophyta. Part 1. General organography. Clarendon, Oxford

    Google Scholar 

  • Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28:439–478

    CAS  Google Scholar 

  • Goto N, Esashi Y (1974) Regulation of hypocotyl growth by ethylene. In: Plant Growth Substances 1973. Hirokawa, Tokyo, pp 853–863

    Google Scholar 

  • Green PR (1980) Organogenesis — a biophysical view. Annu Rev Plant Physiol 31:51–82

    Google Scholar 

  • Gregory FG, Veale JA (1957) A reassessment of the problem of apical dominance. Soc Exp Biol 11:1–20

    CAS  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD Jr Steffens GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    CAS  Google Scholar 

  • Gunning BES, Pate JS (1974) Transfer cells. In: Robards Aw (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, London, pp 441–480

    Google Scholar 

  • Gunning BES, Pate JS, Briarty LG (1968) Specialized “transfer cells” in minor veins of leaves and their possible significance in phloem translocation. J Cell Biol 37:147–171

    Google Scholar 

  • Hall WC (1952) Evidence on the auxin-ethylene balance hypothesis of foliar abscission. Bot Gaz 113:310–322

    CAS  Google Scholar 

  • Hayashi F, Naito R, Bukovac MJ, Sell HM (1968) Occurrence of gibberellin A3 in parthenocarpic apple fruit. Plant Physiol 43:448–450

    PubMed  CAS  Google Scholar 

  • Hertel R, Thomson KS, Russo VEA (1972) In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340

    CAS  Google Scholar 

  • Heslop-Harrison J (1963) Plant growth substances. Vistas in Botany III: 104–194

    Google Scholar 

  • Heyn ANJ (1931) Der Mechanismus der Zellstreckung. Recl Trav Bot Neerl 28:113–244

    Google Scholar 

  • Hillman JR (ed) (1978) Isolation of plant growth substances. Cambridge Univ Press, London

    Google Scholar 

  • Ho THD (1979) Hormonal control of enzyme formation in barley aleurone layers. In: Rubenstein I (ed) Plant molecular biology. Academic Press, London New York, pp 217–240

    Google Scholar 

  • Ho THD, Shih S, Kleinhofs A (1980) Screening for barley mutants with altered hormone sensitivity in their aleurone layers. Plant Physiol 66:153–157

    PubMed  CAS  Google Scholar 

  • Ho THD, Nolan RC, Shute DE (1981) Characterization of a gibberellin-insensitive dwarf wheat, D 6899: Evidence for a regulatory step common to many diverse responses to gibberellins. Plant Physiol 67:1026–1031

    PubMed  CAS  Google Scholar 

  • Hoad GV (1973) Effect of moisture stress on abscisic acid levels in Ricinus communis L. with particular reference to phloem exudate. Planta 113:367–372

    CAS  Google Scholar 

  • Hoad GV, Bowen MR (1968) Evidence for gibberellin-like substances in phloem exudate of higher plants. Planta 82:22–32

    CAS  Google Scholar 

  • Humphries EC, Wheeler AW (1963) The physiology of leaf growth. Annu Rev Plant Physiol 14:385–410

    CAS  Google Scholar 

  • Ilan I, Goren R (1979) Cytokinins and senescence in lemon leaves. Physiol Plant 45:93–95

    CAS  Google Scholar 

  • Jacobs M, Gilbert SF (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220:1297–1300

    PubMed  CAS  Google Scholar 

  • Jacobs WP (1979) Plant hormones and plant development. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Jacobs WP, Case DB (1965) Auxin transport, gibberellin and apical dominance. Science 148:1729–1731

    PubMed  CAS  Google Scholar 

  • Jacobs WP, Danielson J, Hurst V, Adams P (1959) What substance normally controls a given biological process? II. The relation of auxin to apical dominance. Dev Biol 1:534–554

    Google Scholar 

  • Jaffe LF (1968) Localization in the developing Fucus egg and the general role of localizing currents. Adv Morphog 1:295–328

    Google Scholar 

  • Jones RL, Lang A (1968) Extractable and diffusible gibberellins from light- and dark-grown pea seedlings. Plant Physiol 43:629–634

    PubMed  CAS  Google Scholar 

  • Kefford NP, Rijven MGC (1966) Gibberellin and growth in isolated wheat embryos. Science 151:104–105

    PubMed  CAS  Google Scholar 

  • Kende H (1965) Kinetin-like factors in the root exudate of sunflowers. Proc Natl Acad Sci USA 53:1302–1307

    PubMed  CAS  Google Scholar 

  • Kende H, Lang A (1964) Gibberellins and light inhibition of stem growth in peas. Plant Physiol 39:435–440

    PubMed  CAS  Google Scholar 

  • Kozlowski TT (ed) (1973) Shedding of plant parts. Academic Press, London New York

    Google Scholar 

  • Kraus EJ, Kraybill HR (1918) Vegetation and reproduction with special reference to the tomato. Oregon State Coll Agric Exp Stn Bull

    Google Scholar 

  • Küster E (1925) Pathologische Pflanzenanatomie, 3rd edn. Fischer, Jena

    Google Scholar 

  • Lang A (1966) Intercellular regulation in plants. In: Locke M (ed) Major problems in developmental biology. Academic Press, London New York, pp 251–287

    Google Scholar 

  • Lang A, Chailakhyan MKh, Frolova IA (1977) Promotion and inhibition of flower formation in a day neutral plant in grafts with a short-day and a long-day plant. Proc Natl Acad Sci USA 74:2412–2416

    PubMed  CAS  Google Scholar 

  • Lenton JR, Perry VM, Saunders PF (1972) Endogenous abscisic acid in relation to photoperiodically induced bud dormancy. Planta 106:13–22

    CAS  Google Scholar 

  • Leopold AC (1960) Auxins and plant growth. Univ California Press, Berkeley

    Google Scholar 

  • Leopold AC (1972) Ethylene as a plant hormone. In: Kaldewey H, Vardar Y (eds) Hormonal regulation in plant growth and development. Verlag Chemie, Weinheim, pp 245–262

    Google Scholar 

  • Leopold AC (1982) Hormonal regulatory systems in plants. In: Sen, SP (ed) Recent developments in plant science. Today and Tomorrow Publ, New Delhi, pp 33–41

    Google Scholar 

  • Leopold AC, Kawase M (1964) Benzyladenine effects on bean leaf growth and senescence. Am J Bot 51:294–298

    CAS  Google Scholar 

  • Letham DS (1978) Naturally occurring plant growth regulators other than the principle hormones of higher plants. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds: A comprehensive treatise Vol I. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 349–417

    Google Scholar 

  • Lieberman M, Kunishi AT (1972) Thoughts on the role of ethylene in plant growth and development. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 549–560

    Google Scholar 

  • Linthilhac PM, Vesecky TB (1980) Mechanical stress and cell wall orientation. I. Photo-elastic derivation of principal stresses. With a discussion of axillarity and the significance of the “arcuate shell zone”. Am J Bot 67:1477–1483

    Google Scholar 

  • Loeb J (1918) Chemical basis of correlation. Bot Gaz 65:150–174

    Google Scholar 

  • Lorenzi R, Horgan R, Wareing PF (1975) Cytokinins in Picea sitchensis. Biochem Physiol Pflanz 168:333–339

    CAS  Google Scholar 

  • Loveys BR (1977) The intracellular location of abscisic acid in stressed and nonstressed leaf tissue. Physiol Plant 40:6–10

    CAS  Google Scholar 

  • Loveys BR, Leopold AC, Kriedemann PE (1974) Abscisic acid metabolism and stomatal physiology in Betula lutea following alteration in photoperiod. Ann Bot 38:85–92

    CAS  Google Scholar 

  • Mandava NB (1980) Natural products in plant growth regulation. In: Mandova NB, Page SW, Wheeler J (eds) ACS Symp Ser. Dekker, New York

    Google Scholar 

  • Mandava NB, Thompson MJ, Meudt WJ (1981) Brassinosteroids — New plant growth substances. In: Mandava NB, Page SW, Wheeler J (eds) ACS Symp Ser. Dekker, New York

    Google Scholar 

  • Matson DT, Jarvis WR (1970) Post-harvest ripening of strawberries. Hortic Res 10:125–132

    Google Scholar 

  • Mayer AM, Shain Y (1974) Control of seed germination. Annu Rev Plant Physiol 25:167–193

    CAS  Google Scholar 

  • Molisch H (1928) Die Lebensdauer der Pflanze. Fischer, Jena (Transi 1938, Fulling EH, Science Press, Lancaster, PA)

    Google Scholar 

  • Moore TC (1979) Biochemistry and physiology of plant hormones. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Morgan PW, Gausman HW (1966) Effects of ethylene on auxin transport. Plant Physiol 41:45–52

    PubMed  CAS  Google Scholar 

  • Mothes K (1959) Bemerkungen über isolierte Blätter. Colloq Ges Physiol Chem 10:72–81

    Google Scholar 

  • Müller K, Leopold AC (1966) The mechanism of kinetin-induced transport in corn leaves. Planta 68:186–205

    Google Scholar 

  • Naylor JM, Simpson GM (1961) Dormancy studies in seed of Avena fatua. 2. A gibberellin sensitive inhibitory mechanism in the embryo. Can J Bot 39:281–295

    CAS  Google Scholar 

  • Nickeil LG (1982) Plant growth regulators. Agricultural uses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Noodén LD (1980) Senescence in the whole plant. In: Thimann KV (ed) Senescence in plants. CRC Press, Boca Raton, pp 219–258

    Google Scholar 

  • Noodén LD (1984) Integration of soybean pod development and monocarpic senescence. A minireview. Physiol Plant (in press)

    Google Scholar 

  • Noodén LD, Leopold AC (1978) Phytohormones and the endogenous regulation of senescence and abscission. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds — a comprehensive treatise Vol II. Elsevier, Amsterdam, pp 329–369

    Google Scholar 

  • Noodén LD, Lindoo SJ (1978) Monocarpic senescence. What’s New Plant Physiol 9:25–28

    Google Scholar 

  • Noodén LD, Weber JA (1978) Environmental and hormonal control of dormancy in terminal buds of plants. In: Clutter ME (ed) Dormancy and developmental arrest. Academic Press, London New York, pp 221–268

    Google Scholar 

  • Nowacki J, Bandurski RS (1980) Myo-insositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays. L. Plant Physiol 65:422–427

    CAS  Google Scholar 

  • Ohlrogge JB, Garcia-Martinez JL, Adams D, Rappaport L (1980) Uptake and subcellular compartmentation of gibberellin A, applied to leaves of barley and cowpea. Plant Physiol 66:422–427

    PubMed  CAS  Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196

    Google Scholar 

  • Phillips IDJ (1975) Apical dominance. Annu Rev Plant Physiol 26:341–367

    CAS  Google Scholar 

  • Phillips IDJ, Vlitos AJ, Cutler H (1959) The influence of gibberellic acid upon the endogenous growth substances of the Alaska pea. Contrib Boyce Thompson Inst 20:111–120

    CAS  Google Scholar 

  • Phillips IDJ, Miners J, Roddick JG (1980) Effects of light and photoperiodic conditions on abscisic acid in leaves and roots of Acer pseudoplatanus L. Planta 149:118–122

    CAS  Google Scholar 

  • Pilet PE (1957) Action des gibberellins sur l’activite auxines-oxydasique de tissues cultives in vitro. C R Acad Sci Paris 245:1327–1328

    PubMed  CAS  Google Scholar 

  • Powell LE (1975) Some abscisic acid relationships in apple. Riv Ortoflorofrutt It 59:424–432

    Google Scholar 

  • Raschke K, Zeevaart JAF (1976) Abscisic acid content, transpiration, and stomatal conductance as related to leaf age in plants of Xanthium strumarium L. Plant Physiol 58:169–174

    PubMed  CAS  Google Scholar 

  • Ries SK, Wert V, Sweeley CC, Leavitt RA (1977) Triacontanol: A new naturally occurring plant growth regulator. Science 195:1339–1341

    PubMed  CAS  Google Scholar 

  • Roth J, Le Roith D, Shiloach J, Rosenzweig JL, Lesniak MA, Havsankova J (1982) The evolutionary origin of hormones. New Engl J Med 306:523–527

    PubMed  CAS  Google Scholar 

  • Schildknecht H, Iyengar DSP (1975) On the biological chemistry of Mimosaceae I. d-pinitol from Mimosa pudica. Naturwissenschaften 62:533

    CAS  Google Scholar 

  • Schildknecht H, Tausher B, Moeschier H, Edelmann J (1978) Detection and structure elucidation of leaf movement factors from Mimosaceae. Proc 11th Int Symp Chem Nat Prods Part I Vol 4. Bulgarian Acad Sci, Sofia, pp 97–111

    Google Scholar 

  • Scott PC, Leopold AC (1967) Opposing effects of gibberellin and ethylene. Plant Physiol 42:1021–1022

    PubMed  CAS  Google Scholar 

  • Scott TK, Briggs WR (1960) Auxin relationships in the Alaska pea. Am J Bot 47:492–498

    CAS  Google Scholar 

  • Seth A, Wareing PF (1964) Interaction between auxins, gibberellins and kinins in hormone-directed transport. Life Sci 3:1483–1486

    PubMed  CAS  Google Scholar 

  • Seth AK, Davies CR, Wareing PF (1966) Auxin effects on the mobility of kinetin in the plant. Science 151:587–588

    PubMed  CAS  Google Scholar 

  • Shibata K, Kubota T, Kamisaka S (1974) Isolation and chemical identification of a lettuce cotyledon factor, a synergist of the gibberellin action in inducing hypocotyl elongation. Plant Cell Physiol 15:191–194

    CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  • Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787

    CAS  Google Scholar 

  • Snow R (1925) The correlative inhibition of the growth of axillary buds. Ann Bot 39:841–859

    Google Scholar 

  • Steeves TA, Sussex IM (1972) Patterns in plant development. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Stewart FC, Shantz EM (1959) The chemical regulation of growth. Annu Rev Plant Physiol 10:379–404

    Google Scholar 

  • Stowe B, Yamaki T (1959) Gibberellins: Stimulants of plant growth. Science 129:807–816

    PubMed  CAS  Google Scholar 

  • Thimann KV (1960) Plant growth. In: Nowinski WW (ed) Fundamental aspects of normal and malignant growth. Elsevier, Amsterdam, pp 748–822

    Google Scholar 

  • Thimann KV (1977) Hormone action in the life of whole plants. Univ Massachusetts Press, Amherst

    Google Scholar 

  • Thimann KV, Grochowska M (1968) The role of tryptophan and tryptamine as IAA precursors. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge Press, Ottawa, pp 231–242

    Google Scholar 

  • Trewavas AJ (1980) Plant growth substances: what is the molecular basis of their action? What’s New In Plant Physiol 10:33–36

    Google Scholar 

  • Trewavas AJ (1983 a) Plant growth substances — metabolic flywheels for plant development. Cell Biol Internat Rep 7:569–575

    CAS  Google Scholar 

  • Trewavas AJ (1983 b) Is plant development regulated by changes in the concentration of growth substances? Trends in Bioch Sci 1983:354–356

    Google Scholar 

  • Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    PubMed  CAS  Google Scholar 

  • Vanderhoef LN, Briggs WR (1978) Red lightinhibited mesocotyl elongation in maize seedlings I. The auxin hypothesis. Plant Physiol 61:534–537

    PubMed  CAS  Google Scholar 

  • Vardjan M, Nitsch JP (1961) La régéneration chez Cichorium endivia L.: étude des auxines et “kinines” endogènes. Bull Soc Bot Fr 108:363–374

    CAS  Google Scholar 

  • Venis MA (1977) Receptors for plant hormones. Adv Bot Res 5:53–88

    CAS  Google Scholar 

  • Wada S (1961) Growth patterns of rice coleoptiles grown on water and under water. Sci Rep Tohoku Univ Foruth Ser Biol 27:199–207

    Google Scholar 

  • Wada S, Nagao M (1960) Effect of guaiacol on the auxininduced growth of rice coleoptile sections. Sci Rep Tohoku Univ Fourth Ser Biol 26:181–188

    CAS  Google Scholar 

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31:453–489

    CAS  Google Scholar 

  • Wareing PF (1965) Endogenous inhibitors in seed germination and dormancy. In: Ruhland W (ed) Encyclopedia of Plant Physiology Vol XV (2). Springer, Berlin Göttingen Heidelberg, pp 909–924

    Google Scholar 

  • Weaver RJ (1972) Plant growth substances in agriculture. Freeman, San Francisco

    Google Scholar 

  • Went FW (1942) Growth, auxin and tropism in decapitated Avena coleoptiles. Plant Physiol 17:236–249

    PubMed  CAS  Google Scholar 

  • Went F, Thimann KV (1937) Phytohormones. MacMillan, New York

    Google Scholar 

  • Wetmore RH, Rier JP (1963) Experimental induction of vascular tissues in callus of angiosperms. Am J Bot 50:418–430

    CAS  Google Scholar 

  • Wickson M, Thimann KV (1958) The antagonism of auxin and kinetin in apical dominance. Physiol Plant 11:62–74

    CAS  Google Scholar 

  • Wiesner J (1871) Untersuchungen über die herbstliche Entlaubung der Holzgewächse. Sitzungsber Akad Wiss Wien 64:465–510

    Google Scholar 

  • Winter A (1966) A hypothetical route for the biogenesis of IAA. Planta 71:229–239

    CAS  Google Scholar 

  • Wright STC (1961) A sequential growth response to gibberellic acid, kinetin, and indolylacetic acid in the wheat coleoptile. Nature 190:699–700

    PubMed  CAS  Google Scholar 

  • Zimmerman DC, Coudron CA (1979) Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecanoic acid. Plant Physiol 63:536–541

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Leopold, A.C., Noodén, L.D. (1984). Hormonal Regulatory Systems in Plants. In: Scott, T.K. (eds) Hormonal Regulation of Development II. Encyclopedia of Plant Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67731-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67731-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67733-5

  • Online ISBN: 978-3-642-67731-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics