Skip to main content

Immunity and Repression in Bacteriophages P1 and P7

  • Chapter
Current Topics in Microbiology and Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 90))

Abstract

The temperate phage P1 (Bertani 1951) is a large complex phage whose double stranded DNA has a molecular weight of 66 × 106 (Yun and Vapnek 1977). The DNA in the phage particles is terminally redundant and cyclically permuted (Ikeda and Tomizawa 1968). P1 is best known for its ability to perform generalized transduction (Lennox 1955; Ikeda and Tomizawa 1965) and has been used extensively as a tool in Escherichia coli genetics. Because of its broad host range, P1 also serves as a transducing phage for other bacterial species (Goldberg et al. 1974; Kaiser and Dworkin 1975). Phage P1 is the prototype of a class of temperate phages whose prophage is not integrated into the host chromosome (Ikeda and Tomizawa 1968), and thus the strategies it uses to maintain lysogeny may differ from those used by integrative prophages. The P1 prophage is a plasmid (of molecular weight 61 × 106: Yun and Vapnek 1977) and is maintained at about one copy per cell nucleoid (Ikeda and Tomizawa 1968). So, in addition to regulation of transcription, the P1 prophage must also regulate its replication. P1 has all of the characteristics of both a temperate phage and a plasmid. Like other temperate phages, P1 prophage is repressed for production of lytic phage functions and a P1 lysogen exhibits immunity to superinfection by other P1 phage. Like other plasmids, the P1 prophage exhibits incompatibility with related plasmids, i. e., it cannot coexist in the same cell with another member of the same incompatibility group (Hedges et al. 1975). The mechanism for this phenomenon is not yet understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachi B, Arber W (1977) Physical mapping ogI, Bal, EcI, HinII, and Pstl restriction fragments of bacteriophage P1 DNA. Mol Gen Genet 153:311–324.

    Article  PubMed  CAS  Google Scholar 

  • Baumstark BR, Scott JR (1980) The cl repressor of bacteriophage P1. I. Isolation of the clprotein and determination of the P1 DNA region to which it binds J. Mol Biol in press.

    Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli J Bacteriol 62:293–300.

    PubMed  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113.

    Article  PubMed  CAS  Google Scholar 

  • Chesney H, Scott JR (1975) Superinfection immunity and prophage repression in phage P1. II. Mapping of the immunity difference and ampicillin resistance loci of P1 and Famp. Virology 67:375–384.

    Article  PubMed  CAS  Google Scholar 

  • Chesney H, Scott JR, Vapnek D (1979a) Integration of the plasmid prophages P1 and P7 into the Chromosome of Escherichia coll J Mol Biol 130:161–173

    Article  PubMed  CAS  Google Scholar 

  • Chesney RH, Vapnek D, Scott JR (1979b) Site specific recombination leading to the integration of phages P1 and P7. Cold Spring Harbor Symp Quant Biol 43:1147–1150.

    PubMed  CAS  Google Scholar 

  • Echols H, Murialdo H (1978) Genetic map of bacteriophage Lambda. Microbiol Revs 42:577–591.

    CAS  Google Scholar 

  • Echols H, Court D, Green L (1976) On the nature of cis-acting regulatory proteins and genetic organization in bacteriophage: the example of gene Q of bacteriophage l. Genetics 83:5–10.

    PubMed  CAS  Google Scholar 

  • Francke B, Ray DS (1972) Cis-Mimited action of the gene A product of bacteriophage FX174 and the essential bacterial site. Proc Nat Acad Sci USA 69:475–479.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Bender RA, Streicher SL (1974) Direct selection for Pl-sensitive mutants of enteric bacteria. J Bacteriol 118:810–814.

    PubMed  CAS  Google Scholar 

  • Hedges RS, Jacobs AE, Barth PT, Grinter NJ (1975) Compatibility properties of P1 and Fampprophages. Mol Gen Genet 141:263–267.

    Article  PubMed  CAS  Google Scholar 

  • Hertman I, Shafferman A, Geller T (1979) Segregation patterns of an oversized P1 plasmid. Contrib Microbiol Immunol 6:69–77.

    PubMed  CAS  Google Scholar 

  • Howe MM, Bade EG (1975) Molecular biology of bacteriophage Mu. Science 190:624–632.

    Article  PubMed  CAS  Google Scholar 

  • Iida S, Arber W (1979) Multiple physical differences in the genome structure of functionally related bacteriphages P1 and P7. Mol Gen Genet 173:249–269.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Tomizawa J (1965) Transducing fragments in generalized transduction by phage PL I. Molecular origin of the fragments. J Mol Biol 14:85–109.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Tomizawa J (1968) Prophage P1, an extrachromosomal replication unit. Cold Spring Harbor Symp Quant Biol 33:791–798.

    PubMed  CAS  Google Scholar 

  • Jaffe-Brachet A, D’Ari R (1977) Maintenance of bacteriophage P1 plasmid. J Virol 23:476–482.

    PubMed  CAS  Google Scholar 

  • Kaiser AD (1957) Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3:42–61.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser AD, Dworkin M (1975) Gene transfer to a myxobacterium by Escherichia coli phage PL Science 187:653–654.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N (1974) Plasmid formation by bacteriophage l. P thesis, Massachusetts Institute of Technology, pp 103–125.

    Google Scholar 

  • Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage PL Virology 1:190–206.

    Article  PubMed  CAS  Google Scholar 

  • Levine M (1957) Mutations in temperate phage P22 and lysogeny in Salmonella. Virology 3:22–41.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl G (1970) Bacteriophage P2: replication of the chromosome requires a protein which acts only on the genome which coded for it. Virology 42:522–533.

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist BH, Sinsheimer RL (1967) The process of infection and bacteriophage FX174: XV Bacteriophage DNA synthesis in abortive infection with a set of conditional lethal mutants. J Mol Biol 30:69–80.

    Article  PubMed  CAS  Google Scholar 

  • Luria SE, Adams JN, Ting RC (1960) Transduction of lactose-utilizing ability among strains of E. coli and Sh. dysenteriae and the properties of the transducing phage particles. Virology 12: 348–390.

    Article  PubMed  CAS  Google Scholar 

  • Mise K, Suzuki K (1970) New generalized transducing bacteriophage in Escherichia coli. J Virol 6: 253–255.

    PubMed  CAS  Google Scholar 

  • Mural RJ (1978) Transcription of bacteriophage Pl. PhD thesis, University of Georgia, Athens, Georgia.

    Google Scholar 

  • Mural RJ, Chesney RH, Vapnek D, Kropf MM, Scott JR (1979) Isolation and characteriziation of cloned fragments of bacteriophage P1 DNA. Virology 93:387–397.

    Article  PubMed  CAS  Google Scholar 

  • Rosner JL (1973) Modification-deficient mutants of bacteriophage P1 Virology 52:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1968) Genetic studies on bacteriophage PL Virology 36:564–574.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1970a) A defective P1 prophage with a chromosomal location. Virology 40:144–151.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1970b) Clear plaque mutants of phage PL Virology 41:66–71.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1972) A new gene controlling lysogeny in phage PL Virology 48:282–283.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1973) Phage P1 cryptic. II. Location and regulation of prophage genes. Virology 53: 327–326.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1974) A turbid plaque-forming mutant of phage P1 that cannot lysogenize Escherichia coli. Virology 62:344–349.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR (1975) Superinfection immunity and prophage repression in phage PL Virology 65: 173–178.

    CAS  Google Scholar 

  • Scott JR, Kropf MM (1977) Location of new clear plaque genes on the P1 map. Virology 82: 362–368.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR, Shuster RC (1973) DNA synthesis in cells infected with phage Plc3. Virology 53: 484–486.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR, Kropf M, Mendelson L (1977a) Clear plaque mutants of phage P7. Virology 76:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR, Laping JL, Chesney RH (1977b) A phage P1 virulent mutation at a new map location. Virology 78:346–348

    Article  PubMed  CAS  Google Scholar 

  • Scott JR, Chesney RH, Novick RP (1978a) A mutant in P1 plasmid maintenance. In: Schlessinge (od) Microbiology. American Society for Microbiology, Washington, D.C. p 74–77.

    Google Scholar 

  • Scott JR, West W, Laping JL (1978b) pl4-n Superinfection immunity and prophage repression in phage PL IV. The cl repressor bypass function and the role of c4 repressor in immunity. Virology 85:587–600.

    Article  PubMed  CAS  Google Scholar 

  • Scott JR, Carey N, Kropf MM (to be published) Superinfection immunity and repression in phage P1 Mutants that inactivate the product of the cl gene. Virology.

    Google Scholar 

  • Shafferman A, Geller T, Hertman I (1979) Identification of the P1 compatibility and plasmid maintenance locus by a mini Pl-lac + plasmid. Virology 96:32–37

    Article  PubMed  CAS  Google Scholar 

  • Smith HW (1972) Ampicillin resistance in Escherichia coli by phage infection. Nature (New Biol) 238:205–206.

    CAS  Google Scholar 

  • Sternberg N (1979a) A characterization of P1 fragments cloned in a A vector. Virology 96:129–142.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg N (1979b) A demonstration and analysis of P1 site-specific recombination using l-P1 hybrid phages constructed in vitro. Cold Spring Harbor Symp Quant Biol 43:1143–1146.

    PubMed  CAS  Google Scholar 

  • Sternberg N, Austin S, Hamilton D, Yarmolinsky M (1978) Analysis of bacteriophage immunity using l-P1 recombinants constructed in vitro. Proc Natl Acad Sci USA 75:5594–5598.

    Article  PubMed  CAS  Google Scholar 

  • Suskind MM, Bostein D (1978) Molecular genetics of bacteriophage P22. Microbiol Revs 42: 385–413.

    Google Scholar 

  • Tessman E (1966) Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J Mol Biol 17: 218–236

    Article  PubMed  CAS  Google Scholar 

  • Touati-Sehwartz D (1978) Two replication functions in phage P1: ban, an analog of dn, and bof involved in the control of replication. In: Molineux I, Kohiyama, M (eds) DNA Synthesis: present and future. Plenum Press; N.Y. and London

    Google Scholar 

  • Touati-Schwartz D (1979) A new pleiotropic P1 mutation, bof affecting cl repression activity, the expression of pasmid incompatibility and the expression of certain constitutive prophage genes. Molec Gen Genet 174:189–202

    Article  PubMed  CAS  Google Scholar 

  • Walker DH, Walker JT (1976a) Genetic studies of coliphage P1 II. Relatednes to P7. J Virol 19: 271–274

    PubMed  Google Scholar 

  • Walker DH, Walker JT (1976b) Genetic studies of coliphage P1 III. Extended genetic map. J Virol 20:177–185

    PubMed  CAS  Google Scholar 

  • Wandersman C, Yarmolinsky M (1977) Bipartite control of immunity conferred by the related eteroimmune plasmid prophages, P1 and P7. Virology 77:376–385

    Article  Google Scholar 

  • Watkins CA, Scott JR (to be published) Bacteriophage D6, a relative of P1

    Google Scholar 

  • West BW, Scott JR (1977) Superinfection immunity and prophage repression in phage P1 and P7. III. Induction by virulent mutants. Virology 78:267–276

    Article  PubMed  CAS  Google Scholar 

  • Yun T, Vapnek D (1977) Electron microscopic analysis of bacteriophage P1, P1CM and P7: determination of genome size, sequence homology and location of antibiotic resistance determinants. Virology 77:376–385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, J.R. (1980). Immunity and Repression in Bacteriophages P1 and P7. In: Arber, W., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67717-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67717-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67719-9

  • Online ISBN: 978-3-642-67717-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics