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Preface to the Revised Third Printing 

This revision of the 1983 second edition of "Elliptic Partial Differential Equations 
of Second Order" corresponds to the Russian edition, published in 1989, in which 
we essentially updated the previous version to 1984. The additional text relates to 
the boundary Holder derivative estimates of Nikolai Krylov, which provided a 
fundamental component of the further development of the classical theory of 
elliptic (and parabolic), fully nonlinear equations in higher dimensions. In 
our presentation we adapted a simplification of Krylov's approach due to Luis 
Caffarelli. 

The theory of nonlinear second order elliptic equations has continued to 
flourish during the last fifteen years and, in a brief epilogue to this volume, we 
signal some of the major advances. Although a proper treatment would necessi
tate at least another monograph, it is our hope that this book, most of whose text 
is now more than twenty years old, can continue to serve as background for these 
and future developments. 

Since our first edition we have become indebted to numerous colleagues, all 
over the globe. It was particularly pleasant in recent years to make and renew 
friendships with our Russian colleagues, Olga Ladyzhenskaya, Nina Ural'tseva, 
Nina Ivochkina, Nikolai Krylov and Mikhail Safonov, who have contributed so 
much to this area. Sadly, we mourn the passing away in 1996 of Ennico De Giorgi, 
whose brilliant discovery forty years ago opened the door to the higher-dimen
sional nonlinear theory. 

October 1997 David Gilbarg . Neil S. Trudinger 



Preface to the First Edition 

This volume is intended as an essentially self-contained exposition of portions of the 
theory of second order quasilinear elliptic partial differential equations, with 
emphasis on the Dirichlet problem in bounded domains. It grew out of lecture 
notes for graduate courses by the authors at Stanford University, the final material 
extending well beyond the scope of these courses. By including preparatory 
chapters on topics such as potential theory and functional analysis, we have 
attempted to make the work accessible to a broad spectrum of readers. Above all, 
we hope the readers of this book will gain an appreciation of the multitude of 
ingenious barehanded techniques that have been developed in the study of elliptic 
equations and have become part of the repertoire of analysis. 

Many individuals have assisted us during the evolution of this work over the 
past several years. In particular, we are grateful for the valuable discussions 
with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful 
comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and 
B. Turkington; for the contributions ofG. Williams in Section 10.5 and of A. S. 
Geue in Section 10.6; and for the impeccably typed manuscript which resulted 
from the dedicated efforts ofIsolde Field at Stanford and Anna Zalucki at Canberra. 
The research of the authors connected with this volume was supported in part by 
the National Science Foundation. 

August 1977 David Gilbarg 
Stanford 

Neil S. Trudinger 
Canberra 

Note: The Second Edition includes a new, additional Chapter 9. Consequently Chapters 10 
and 15 referred to above have become Chapters 11 and 16. 
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