Skip to main content

Molecular Mechanisms Controlling Susceptibitliy to Tumor Necrosis Factor Induced Cell Death

  • Conference paper
Book cover Tumor Biology

Part of the book series: NATO ASI Series ((ASIH,volume 99))

  • 145 Accesses

Summary

The receptors of the multifunctional cytokine Tumor Necrosis Factor-α (TNF) belong to a family of structurally related proteins called the TNFR/NGFR-family. Two receptors of this family, TNFR and Fas can trigger cell death in responsive cells. In contrast to Fas, activated TNFR exerts a variety of biologic functions other than death induction. Virus-infected cells, tumor cells and transformed cells are often sensitive to the death-inducing activity of TNF, yet the molecular mechanisms underlying TNF-sensitivity are unclear. We have addressed the question whether normally growing cells may acquire a TNF-sensitive phenotype upon activation of growth-deregulating oncogenes. We have shown that the oncogenic activation of the nuclear phosphoprotein c-Myc renders TNF-resistant fibroblasts sensitive to TNF-mediated death. Moreover, an increased constitutive expression of c-Myc increases the cytotoxic action of TNF. These results suggest that the deregulation of c-Myc, which is common in human tumors and tumor cell lines is one reason why such cells are TNF sensitive. Deregulation of growth by viral or endogenous oncoproteins renders cells more prone to apoptosis in comparison to their normally growing counterparts. The regions of c-Myc required for cell transformation and induction of apoptosis upon growth-factor deprivation are also necessary for the induction of TNF-sensitivity. In addition, the Bcl2 and MnSOD proteins can inhibit the c-Myc dependent apoptosis of growth factor-deprived cells and of TNF-stimulated cells. Deregulation of cell growth may preset the apoptotic machinery and thus render cells susceptible for the death-inducing effects of TNF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo K, Mäkelä TP, Saksela K, Koskinen P, and Hirvonen H In Book: Kellems R (eds) (1992) Gene amplification in Mammalian Cells: Techniques and Applications. Marcel Dekker, Inc. New York

    Google Scholar 

  • Amati B, Littlewood TD, Evan GI, and Land H (1993) The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 12: 5083–5087

    PubMed  CAS  Google Scholar 

  • Bazan JF (1993) Emerging families of cytokines and receptors. Curr Biol 3: 603–606

    Article  PubMed  CAS  Google Scholar 

  • Blackwood EM, and Eisenman RN (1991) Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with myc. Science 251: 1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer-Avni Y, Camonis JH, and Wallach D (1995) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 270: 387–391

    Article  PubMed  CAS  Google Scholar 

  • Chen MJ, Holskin B, Strickler J, Gorniak J, Clark MA, Johnson PJ, Mitcho M, and Shalloway D (1987) Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF. Nature 330: 581–583

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, and Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512

    Article  PubMed  CAS  Google Scholar 

  • Cleveland JL, and Ihle JN (1995) Contenders in FasL/TNF death signaling. Cell 81: 479–482

    Article  PubMed  CAS  Google Scholar 

  • Cornelius MJ, Marlowe M, Lee MD, and Pekala PH (1990) The growth factor-like effects of tumor necrosis factor-α. J Biol Chem 265: 20506–20516

    PubMed  CAS  Google Scholar 

  • Duerksen-Hughes PJ, Hermiston TW, Wold WSM, and Gooding LR (1991) The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells. J Virol 65: 1236–1244

    PubMed  CAS  Google Scholar 

  • Eilers M, Picard D, Yamamoto KR, and Bishop JM (1989) Chimaeras of Myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Schirm S, and Bishop JM (1991) The MYC protein activates transcription of the α-prothymosin gene. EMBO J 10: 133–141

    PubMed  CAS  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Waters CM, Penn LZ, and Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Fanidi A, Harrington EA, and Evan GI (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554–556

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, and Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Gordon HM, Kucera G, Salvo R, and Boss JM (1992) Tumor necrosis factor induces genes involved in inflammation, cellular and tissue repair, and metabolism in murine fibroblasts. J Immunol 148: 4021–4027

    PubMed  CAS  Google Scholar 

  • Grignani F, Lombardi L, Inghirami G, Sternas L, Cechova K, and Dalla-Favera R (1990) Negative autoregulation of c-myc gene expression is inactivated in transformed cells. EMBO J 9: 3913–3922

    PubMed  CAS  Google Scholar 

  • Hsu H, Xiong J, and Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kB activation. Cell 81: 495–504

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima SI, Sameshima M, Hase A, Seto Y, and Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243

    Article  PubMed  CAS  Google Scholar 

  • Jäättelä M, Wissing D, Bauer PA, and Li GC (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11: 3507–3512

    PubMed  Google Scholar 

  • Jäättelä M (1991) Biology of disease. Biologic activities and mechanisms of action of tumor necrosis factor-α/Cachectin. Lab Invest 64: 724–742

    PubMed  Google Scholar 

  • Klefstrom J, Västrik I, Saksela E, Valle J, Eilers M, and Alitalo K (1994) c-Myc induces cellular susceptibility to the cytotoxic action of TNF-α. EMBO J 13: 5442–5450

    PubMed  CAS  Google Scholar 

  • Klefstrom J, Koskinen PJ, Saksela E, Jäättelä M, Bravo R, and Alitalo K (1993) A subset of immediate early mRNAs induced by tumor necrosis factor-α during cellular cytotoxic and non-cytotoxic responses. Int J Cancer 55: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW, and Wright SC (1990) Cytotoxic mechanism of tumor necrosis factor-α. FASEB J 4: 3215–3223

    PubMed  CAS  Google Scholar 

  • Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH, Chen EY, and Goeddel DV (1991) Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci U S A 88: 2830–2834

    Article  PubMed  CAS  Google Scholar 

  • Li LH, Nerlov C, Prendergast G, MacGregor D, and Ziff EB (1994) c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 13: 4070–4079

    PubMed  CAS  Google Scholar 

  • Lowe SW, and Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes & Dev 7: 535–545

    Article  CAS  Google Scholar 

  • Mackay F, Loetscher H, Stueber D, Gehr G, and Lesslauer W (1993) Tumor Necrosis Factor α (TNF-α)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 177: 1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, and Golstein P (1995) The Fas death factor. Science 267: 1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, and Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809 Old LJ (1988) Tumor necrosis factor. Sci Am 258: 41–49

    Google Scholar 

  • Opipari AW, Hu HM, Yabkowitz R, and Dixit VM (1992) The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 267: 12424–12427

    PubMed  CAS  Google Scholar 

  • Philipp A, Schneider A, Västrik I, Finke K, Xiong Y, Beach D, Alitalo K, and Eilers M (1994) Repression of cyclin D1: a novel function of Myc. Mol Cell Biol 14: 4032–4043

    PubMed  CAS  Google Scholar 

  • Ralston R, and Bishop JM (1983) The protein products of the myc and myb oncogenes and adenovirus Ela are structurally related. Nature 306: 803–806

    Article  PubMed  CAS  Google Scholar 

  • Roy AL, Carruthers C, Gutjahr T, and Roeder RG (1993) Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365: 359–361

    Article  PubMed  CAS  Google Scholar 

  • Rubin BY In Book: Aggarwal BB and Vilcek J (eds) (1992) Tumor Necrosis Factors. Marcel Dekker Inc. New York

    Google Scholar 

  • Shenk T, and Flint J (1991) Transcriptional and transforming activities of the adenovirus E1A proteins. Adv Cancer Res 57: 47–85

    Article  PubMed  CAS  Google Scholar 

  • Smith RA, and Baglioni C In Book: Aggarwal BB and Vilcek J (eds) (1992) Tumor Necrosis Factors. Marcel Dekker Inc. New York

    Google Scholar 

  • Stanger BZ, Leder P, Lee TH, Kim E, and Seed B (1995) RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523

    Article  PubMed  CAS  Google Scholar 

  • Stavel S, Argos P, and Philipson L (1985) The release of growth arrest by microinjection of adenovirus E1A DNA. EMBO J 4: 2329–2336

    Google Scholar 

  • Suda T, Takahashi T, Golstein P, and Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA, and Shepard HM (1985) Recombinant human tumor necrosis factor-α: Effects on proliferation of normal and transformed cells in vitro. Science 230: 943–945

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia LA, Ayres TM, Wong GHW, and Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845–853

    Article  PubMed  CAS  Google Scholar 

  • Trauth BC, Klas C, Peters AMJ, Matzku S, Möller P, Falk W, Debatin KM, and Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Vassalli P (1993) Tumor Necrosis Factor: Knock-out but not knocked out. Current Biology 3: 607–610

    Article  PubMed  CAS  Google Scholar 

  • Västrik I, Mäkela TP, Koskinen PJ, Klefstrom J, and Alitalo K (1994) Myc protein, partners and antagonists. Crit Rev Oncogen 5: 59–68

    Google Scholar 

  • Vilcek J, and Lee TH (1991) Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 266: 7313–7316

    PubMed  CAS  Google Scholar 

  • Waters CM, Littlewood TD, Hancock DC, Moore JP, and Evan GI (1991) c-myc protein expression in untransformed fibroblasts. Oncogene 6: 797–805

    PubMed  CAS  Google Scholar 

  • White E, Sabbatini P, Debbas M, Wold WSM, Kusher DI, and Gooding LR (1992) The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α. Mol Cell Biol 12: 2570–2580

    PubMed  CAS  Google Scholar 

  • Wong GH, Elwell JH, Oberley LW, and Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58: 923–931

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klefstrom, J., Saksela, E., Alitalo, K. (1996). Molecular Mechanisms Controlling Susceptibitliy to Tumor Necrosis Factor Induced Cell Death. In: Tsiftsoglou, A.S., Sartorelli, A.C., Housman, D.E., Dexter, T.M. (eds) Tumor Biology. NATO ASI Series, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61180-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61180-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64735-2

  • Online ISBN: 978-3-642-61180-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics