Skip to main content

Community Structure of Soil Microorganisms

  • Chapter
Methods in Soil Biology

Abstract

The structural analyses of microorganisms in soil present a far more complex problem than their functional analyses (C02 determination, ATP measurement etc.). Microbial communities of soils are extremely diverse, and it is assumed that with conventional microbiological cultivation techniques only about 1% of the indigenous species are recovered (Torsvik et al. 1990). Therefore, methods that require neither growth nor removal of cells from the soil matrix are needed. Microbial diversity and community structure may be best estimated by RNA analysis (Ward et al. 1990) or DNA extraction (Torsvik et al. 1990). Besides these techniques, the extraction and analysis of the fatty acids derived from phospholipids (PLFAs) and lipopolysaccharides (LPS; Vestal and White 1989; Tunlid and White 1992) are a promising approach to classify the structure of the microbial communities in soils. The measurement of the content of the phospholipids has also been used to estimate microbial biomass in sediments and soils (Smith et al. 1986; Baath et al. 1992; Korner and Laczko 1992; Zelles et al. 1992; Frostegard et al. 1993; Hill et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baath E, Frostegard A, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58:4026–4031

    CAS  Google Scholar 

  • Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (1992) The procaryotes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Frostegard A, Baath E, Tunlid A (1993) Shift in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen & Unwin, London

    Google Scholar 

  • Hill TCJ, McPherson EF, Harris JA, Birch P (1993) Microbial biomass estimated by phospholipid phosphate in soils with diverse microbial communities. Soil Biol Biochem 25:1779–1786

    Article  Google Scholar 

  • Jantzen E, Bryn K (1985) Whole cell and lipopolysaccharide fatty acids and sugars of Gram-negative bacteria. In:Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 145–172

    Google Scholar 

  • Kaneda T (1991) Iso and anteiso fatty acids in bacteria:biosynthesis, function and taxonomic significance. Microbiol Rev 55:67–77

    Google Scholar 

  • Kates M (1964) Bacterial lipids. Adv Lipid Res 2:17–90

    CAS  Google Scholar 

  • Kerger BD, Nichols PD, Antworth CP, Sand W, Bock E, Cox JC, Langworthy TA, White DC (1986) Signature fatty acids in the polar lipids of acid-producing Thiobacillus spp.:methoxy, cylopropyl, α-hydroxy-cyclopropyl and branched and normal monoenoic fatty acids. FEMS Microbiol Ecol 38:67–77

    Article  CAS  Google Scholar 

  • Korner J, Laczko E (1992) A new method for assessing soil microorganisms diversity and evidence of vitamin deficiency in low diversity communities. Biol Fertil Soil 13:58–60

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinon analysis of actinomycetes and related organisms. In:Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Langworthy TA, Tornabene TG, Holzer G (1982) Lipids of archaebacteria. Zentralbl Bakt Hyg I Abt Orig C 3:228–244

    CAS  Google Scholar 

  • Lechevalier H, Lechevalier MP (1988) Chemotaxonomic use of lipids — an overview. In:Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 869–902

    Google Scholar 

  • Mukwaya GM, Welch DF (1989) Subgrouping of Pseudomonas cepaciaby cellular fatty acid composition. J Clin Microbiol 27:2646–2649

    Google Scholar 

  • O’Donnell AG, Nahaie MR, Goodfellow M, Minnikin DE, Hajek V (1985) Numerical analysis of fatty acid profiles in the identification of staphylococci. J Gen Microbiol 27:2023–2033

    Google Scholar 

  • O’Leary WM, Wilkinson SG (1988) Gram-positive bacteria. In:Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 117–201

    Google Scholar 

  • Parker JH, Smith GA, Fredrickson HL, Vestal JR, White DC (1982) Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide A for Gram-negative bacteria in sediments. Appl Environ Microbiol 44:1170–1177

    CAS  Google Scholar 

  • Ratletge C, Wilkinson SG (1988) Microbial lipids, vol 1. Academic Press, London

    Google Scholar 

  • Saddler JN, Wardlaw AC (1980) Extraction, distribution and biodegradation of bacterial lipopolysaccharides in estuarine sediments. Antonie Leeuwenhoek J Microbiol 46:27–39

    Article  CAS  Google Scholar 

  • Smith GA, Nickels JS, Kerger BD, Davis JD, Collins SP, Wilson JT, McNabb JF, White DC (1986) Quantitative characterization of microbial biomass and community structure in subsurface material:a prokaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111

    Article  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–725

    Article  CAS  Google Scholar 

  • Tollefson TS, McKercher RB (1983) The degradation of 14C-labelled phosphatidyl choline in soil. Soil Biol Biochem 15:145–148

    Article  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FR (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Tunlid A, White DC (1992) Boichemical Analysis of biomass, community structure, nutritional status, and metabolic activity of microbiological in soil. In:Stotzky G, Bollag JM (eds) soil biochemistry, vol. 7 Marcel Dekker, New York, pp 229 262

    Google Scholar 

  • Verstal JR, White DC, (1989) LipidS analysis in microbial ecology. Bioscience 39:535–541

    Article  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16s rRNA Sequence reveal numerous uncultured microorganism in a natural community. Nature 345:63–65

    Article  Google Scholar 

  • White DC, Tucker AN (1969) Phospholipid metabolism during bacterial growth. J Lipid Res 10:220–233

    CAS  Google Scholar 

  • Wilkinson SG (1988) Gram-negative bacteria. In:Ratledge C, Wilkinson SG (eds) Microbial Lipids, vol 1. Academic Press, London, pp 299–488

    Google Scholar 

  • Wollenweber HW, Rietchel ET (1990) Analysis of lipopolisaccharide (lipid A) fatty acids. J Microbiol Meth 11:195–211

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY (1992) Soiganture fatty acids in phospholipids and lipopolisscharide as indicators of microbial biomass and community structure in agriculture soil. Soil Biol Biochem 24:317–323

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY (1993) Fractination of fatty acids from soil lipids by solid phase extraction and their quantitative analysis by GC-MS. Soil Biol Biochem 25:495–507

    Article  CAS  Google Scholar 

  • Christie WW (1989) Silver ion chromatography using solid-phase extraction columns References packed with a bonded-sulfonic acid phase. J Lipid Res 30:1471–1473

    CAS  Google Scholar 

  • Fay L, Richli U (1991) Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541:89–98

    Article  CAS  Google Scholar 

  • Parker JH, Smith GA, Fredrickson HL, Vestal JR, White DC (1982) Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide A, for Gram-negative bac-teria in sediments. Appl Environ Microbiol 44:1170–1177

    CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In:Stotzky G, Bollag JM (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51– 62

    Article  Google Scholar 

  • Wollenweber H-W, Rietschel ET (1990) Analysis of lipopolysaccharide (lipid A) fatty acids. J Microbiol Methods 11:195–211

    Article  Google Scholar 

  • Zelles L, Bai QY (1993) Fractionation of fatty acids derived from soil lipids by solid phase extraction and their quantitative analysis by GC-MS. Soil Biol Biochem 25:495–507

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zelles, L. (1996). Community Structure of Soil Microorganisms. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds) Methods in Soil Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60966-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60966-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64633-1

  • Online ISBN: 978-3-642-60966-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics